Barrow's inequality

Last updated
Barrow inequality.svg

In geometry, Barrow's inequality is an inequality relating the distances between an arbitrary point within a triangle, the vertices of the triangle, and certain points on the sides of the triangle. It is named after David Francis Barrow.

Contents

Statement

Let P be an arbitrary point inside the triangle ABC. From P and ABC, define U, V, and W as the points where the angle bisectors of BPC, CPA, and APB intersect the sides BC, CA, AB, respectively. Then Barrow's inequality states that [1]

with equality holding only in the case of an equilateral triangle and P is the center of the triangle. [1]

Generalisation

Barrow's inequality can be extended to convex polygons. For a convex polygon with vertices let be an inner point and the intersections of the angle bisectors of with the associated polygon sides , then the following inequality holds: [2] [3]

Here denotes the secant function. For the triangle case the inequality becomes Barrow's inequality due to .

History

Barrow strengthening Erdos-Mordell

|
P
A
|
+
|
P
B
|
+
|
P
C
|
>=
2
(
|
P
Q
a
|
+
|
P
Q
b
|
+
|
P
Q
c
|
)
>=
2
(
|
P
F
a
|
+
|
P
F
b
|
+
|
P
F
c
|
)
{\displaystyle {\begin{aligned}&\quad \,|PA|+|PB|+|PC|\\&\geq 2(|PQ_{a}|+|PQ_{b}|+|PQ_{c}|)\\&\geq 2(|PF_{a}|+|PF_{b}|+|PF_{c}|)\end{aligned}}} Ungleichung barrow2.svg
Barrow strengthening Erdös-Mordell

Barrow's inequality strengthens the Erdős–Mordell inequality, which has identical form except with PU, PV, and PW replaced by the three distances of P from the triangle's sides. It is named after David Francis Barrow. Barrow's proof of this inequality was published in 1937, as his solution to a problem posed in the American Mathematical Monthly of proving the Erdős–Mordell inequality. [1] This result was named "Barrow's inequality" as early as 1961. [4]

A simpler proof was later given by Louis J. Mordell. [5]

See also

Related Research Articles

In geometry, a polygon is a plane figure that is described by a finite number of straight line segments connected to form a closed polygonal chain or polygonal circuit. The solid plane region, the bounding circuit, or the two together, may be called a polygon.

Quadrilateral polygon with four sides and four corners

In Euclidean plane geometry, a quadrilateral is a polygon with four edges (sides) and four vertices (corners). Other names for quadrilateral include quadrangle, tetragon, and 4-gon. A quadrilateral with vertices , , and is sometimes denoted as .

Triangle Shape with three sides

A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, and C is denoted .

Simplex Multi-dimensional generalization of triangle

In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions.

Triangle inequality property of geometry, also used to generalize the notion of "distance" in metric spaces

In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but some authors, especially those writing about elementary geometry, will exclude this possibility, thus leaving out the possibility of equality. If x, y, and z are the lengths of the sides of the triangle, with no side being greater than z, then the triangle inequality states that

Bisection

In geometry, bisection is the division of something into two equal or congruent parts, usually by a line, which is then called a bisector. The most often considered types of bisectors are the segment bisector and the angle bisector.

Incircle and excircles of a triangle Circles tangent to all three sides of a triangle

In geometry, the incircle or inscribed circle of a triangle is the largest circle contained in the triangle; it touches the three sides. The center of the incircle is a triangle center called the triangle's incenter.

Equilateral triangle

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

In combinatorial mathematics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling of a sufficiently large complete graph. To demonstrate the theorem for two colours, let r and s be any two positive integers. Ramsey's theorem states that there exists a least positive integer R(r, s) for which every blue-red edge colouring of the complete graph on R(r, s) vertices contains a blue clique on r vertices or a red clique on s vertices.

Centroid Mean ("average") position of all the points in a shape

In mathematics and physics, the centroid or geometric center of a plane figure is the arithmetic mean position of all the points in the figure. Informally, it is the point at which a cutout of the shape could be perfectly balanced on the tip of a pin.

Isosceles triangle

In geometry, an isosceles triangle is a triangle that has two sides of equal length. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case. Examples of isosceles triangles include the isosceles right triangle, the golden triangle, and the faces of bipyramids and certain Catalan solids.

Incenter

In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bisectors of the triangle cross, as the point equidistant from the triangle's sides, as the junction point of the medial axis and innermost point of the grassfire transform of the triangle, and as the center point of the inscribed circle of the triangle.

In graph theory, Turán's theorem is a result on the number of edges in a Kr+1-free graph.

Circumscribed circle

In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.

Fermat point

In geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the total distance from the three vertices of the triangle to the point is the minimum possible. It is so named because this problem was first raised by Fermat in a private letter to Evangelista Torricelli, who solved it.

Simson line

In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. The line through these points is the Simson line of P, named for Robert Simson. The concept was first published, however, by William Wallace in 1799.

In Euclidean geometry, the Erdős–Mordell inequality states that for any triangle ABC and point P inside ABC, the sum of the distances from P to the sides is less than or equal to half of the sum of the distances from P to the vertices. It is named after Paul Erdős and Louis Mordell. Erdős (1935) posed the problem of proving the inequality; a proof was provided two years later by Mordell and D. F. Barrow (1937). This solution was however not very elementary. Subsequent simpler proofs were then found by Kazarinoff (1957), Bankoff (1958), and Alsina & Nelsen (2007).

Tangential polygon

In Euclidean geometry, a tangential polygon, also known as a circumscribed polygon, is a convex polygon that contains an inscribed circle. This is a circle that is tangent to each of the polygon's sides. The dual polygon of a tangential polygon is a cyclic polygon, which has a circumscribed circle passing through each of its vertices.

Acute and obtuse triangles

An acute triangle is a triangle with three acute angles. An obtuse triangle is a triangle with one obtuse angle and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry, no Euclidean triangle can have more than one obtuse angle.

References

  1. 1 2 3 Erdős, Paul; Mordell, L. J.; Barrow, David F. (1937), "Solution to problem 3740", American Mathematical Monthly , 44 (4): 252–254, doi:10.2307/2300713, JSTOR   2300713 .
  2. M. Dinca: "A Simple Proof of the Erdös-Mordell Inequality". In: Articole si Note Matematice, 2009
  3. Hans-Christof Lenhard: "Verallgemeinerung und Verschärfung der Erdös-Mordellschen Ungleichung für Polygone". In: Archiv für Mathematische Logik und Grundlagenforschung, Band 12, S. 311–314, doi:10.1007/BF01650566 (German).
  4. Oppenheim, A. (1961), "New inequalities for a triangle and an internal point", Annali di Matematica Pura ed Applicata , 53: 157–163, doi:10.1007/BF02417793, MR   0124774
  5. Mordell, L. J. (1962), "On geometric problems of Erdös and Oppenheim", The Mathematical Gazette , 46 (357): 213–215, JSTOR   3614019 .