Bishop's graph

Last updated

In mathematics, a bishop's graph is a graph that represents all legal moves of the chess piece the bishop on a chessboard. Each vertex represents a square on the chessboard and each edge represents a legal move of the bishop; that is, there is an edge between two vertices (squares) if they occupy a common diagonal. When the chessboard has dimensions , then the induced graph is called the bishop's graph.

Contents

Properties

The fact that the chessboard has squares of two colors, say red and black, such that squares that are horizontally or vertically adjacent have opposite colors, implies that the bishop's graph has two connected components, whose vertex sets are the red and the black squares, respectively. The reason is that the bishop's diagonal moves do not allow it to change colors, but by one or more moves a bishop can get from any square to any other of the same color. The two components are isomorphic if the board has a side of even length, but not if both sides are odd.

A component of the bishop's graph can be treated as a rook's graph on a diamond if the original board is square and has sides of odd length, because if the red squares (say) are turned 45 degrees, the bishop's moves become horizontal and vertical, just like those of the rook.

Domination

A square is said to be attacked by a bishop if the bishop can get to that square in exactly one move. A dominating set is an arrangement of bishops such that every square is attacked or occupied by one of those bishops. An independent dominating set is a dominating set in which no bishop attacks any other. The minimum number of bishops needed to dominate a square board of side n is exactly n, and this is also the smallest number of bishops that can form an independent dominating set. By contrast, a total domination set, which is a dominating set for which every square, including those occupied by bishops, is attacked by one of the bishops, requires more bishops; on the square board of side n 3, the least size of a total dominating set is about 1/3 larger than a minimum dominating set. [1] [2]

Related Research Articles

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions. The problem was first posed in the mid-19th century. In the modern era, it is often used as an example problem for various computer programming techniques.

<span class="mw-page-title-main">Bipartite graph</span> Graph divided into two independent sets

In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

In combinatorics, the Dinitz theorem is a statement about the extension of arrays to partial Latin squares, proposed in 1979 by Jeff Dinitz, and proved in 1994 by Fred Galvin.

<span class="mw-page-title-main">Circle graph</span> Intersection graph of a chord diagram

In graph theory, a circle graph is the intersection graph of a chord diagram. That is, it is an undirected graph whose vertices can be associated with a finite system of chords of a circle such that two vertices are adjacent if and only if the corresponding chords cross each other.

<span class="mw-page-title-main">Dominating set</span> Subset of a graphs nodes such that all other nodes link to at least one

In graph theory, a dominating set for a graph G is a subset D of its vertices, such that any vertex of G is either in D, or has a neighbor in D. The domination numberγ(G) is the number of vertices in a smallest dominating set for G.

In graph theory, a connected dominating set and a maximum leaf spanning tree are two closely related structures defined on an undirected graph.

<span class="mw-page-title-main">King's graph</span> Graph that represents all legal moves of the king on a chessboard

In graph theory, a king's graph is a graph that represents all legal moves of the king chess piece on a chessboard where each vertex represents a square on a chessboard and each edge is a legal move. More specifically, an king's graph is a king's graph of an chessboard. It is the map graph formed from the squares of a chessboard by making a vertex for each square and an edge for each two squares that share an edge or a corner. It can also be constructed as the strong product of two path graphs.

<span class="mw-page-title-main">Knight's graph</span> Graph that represents all legal moves of the knight on a chessboard

In graph theory, a knight's graph, or a knight's tour graph, is a graph that represents all legal moves of the knight chess piece on a chessboard. Each vertex of this graph represents a square of the chessboard, and each edge connects two squares that are a knight's move apart from each other. More specifically, an knight's graph is a knight's graph of an chessboard. Its vertices can be represented as the points of the Euclidean plane whose Cartesian coordinates are integers with and , and with two vertices connected by an edge when their Euclidean distance is .

<span class="mw-page-title-main">Rook's graph</span> Graph of chess rook moves

In graph theory, a rook's graph is an undirected graph that represents all legal moves of the rook chess piece on a chessboard. Each vertex of a rook's graph represents a square on a chessboard, and there is an edge between any two squares sharing a row (rank) or column (file), the squares that a rook can move between. These graphs can be constructed for chessboards of any rectangular shape. Although rook's graphs have only minor significance in chess lore, they are more important in the abstract mathematics of graphs through their alternative constructions: rook's graphs are the Cartesian product of two complete graphs, and are the line graphs of complete bipartite graphs. The square rook's graphs constitute the two-dimensional Hamming graphs.

<span class="mw-page-title-main">Triangle-free graph</span> Graph without triples of adjacent vertices

In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs.

In graph theory, Vizing's conjecture concerns a relation between the domination number and the cartesian product of graphs. This conjecture was first stated by Vadim G. Vizing (1968), and states that, if γ(G) denotes the minimum number of vertices in a dominating set for the graph G, then

In combinatorial mathematics, a rook polynomial is a generating polynomial of the number of ways to place non-attacking rooks on a board that looks like a checkerboard; that is, no two rooks may be in the same row or column. The board is any subset of the squares of a rectangular board with m rows and n columns; we think of it as the squares in which one is allowed to put a rook. The board is the ordinary chessboard if all squares are allowed and m = n = 8 and a chessboard of any size if all squares are allowed and m = n. The coefficient of x k in the rook polynomial RB(x) is the number of ways k rooks, none of which attacks another, can be arranged in the squares of B. The rooks are arranged in such a way that there is no pair of rooks in the same row or column. In this sense, an arrangement is the positioning of rooks on a static, immovable board; the arrangement will not be different if the board is rotated or reflected while keeping the squares stationary. The polynomial also remains the same if rows are interchanged or columns are interchanged.

A mathematical chess problem is a mathematical problem which is formulated using a chessboard and chess pieces. These problems belong to recreational mathematics. The most well-known problems of this kind are the eight queens puzzle and the knight's tour problem, which have connection to graph theory and combinatorics. Many famous mathematicians studied mathematical chess problems, such as, Thabit, Euler, Legendre and Gauss. Besides finding a solution to a particular problem, mathematicians are usually interested in counting the total number of possible solutions, finding solutions with certain properties, as well as generalization of the problems to N×N or M×N boards.

<span class="mw-page-title-main">Well-covered graph</span> Graph with equal-size maximal independent sets

In graph theory, a well-covered graph is an undirected graph in which every minimal vertex cover has the same size as every other minimal vertex cover. Equivalently, these are the graphs in which all maximal independent sets have equal size. Well-covered graphs were defined and first studied by Michael D. Plummer in 1970.

<span class="mw-page-title-main">Telephone number (mathematics)</span> Number of ways to pair up n objects

In mathematics, the telephone numbers or the involution numbers form a sequence of integers that count the ways n people can be connected by person-to-person telephone calls. These numbers also describe the number of matchings of a complete graph on n vertices, the number of permutations on n elements that are involutions, the sum of absolute values of coefficients of the Hermite polynomials, the number of standard Young tableaux with n cells, and the sum of the degrees of the irreducible representations of the symmetric group. Involution numbers were first studied in 1800 by Heinrich August Rothe, who gave a recurrence equation by which they may be calculated, giving the values

In graph theory, an eternal dominating set for a graph G = (VE) is a subset D of V such that D is a dominating set on which mobile guards are initially located (at most one guard may be located on any vertex). The set D must be such that for any infinite sequence of attacks occurring sequentially at vertices, the set D can be modified by moving a guard from an adjacent vertex to the attacked vertex, provided the attacked vertex has no guard on it at the time it is attacked. The configuration of guards after each attack must induce a dominating set. The eternal domination number, γ(G), is the minimum number of vertices possible in the initial set D. For example, the eternal domination number of the cycle on five vertices is two.

In graph theory, a cop-win graph is an undirected graph on which the pursuer (cop) can always win a pursuit–evasion game against a robber, with the players taking alternating turns in which they can choose to move along an edge of a graph or stay put, until the cop lands on the robber's vertex. Finite cop-win graphs are also called dismantlable graphs or constructible graphs, because they can be dismantled by repeatedly removing a dominated vertex or constructed by repeatedly adding such a vertex. The cop-win graphs can be recognized in polynomial time by a greedy algorithm that constructs a dismantling order. They include the chordal graphs, and the graphs that contain a universal vertex.

The independence complex of a graph is a mathematical object describing the independent sets of the graph. Formally, the independence complex of an undirected graph G, denoted by I(G), is an abstract simplicial complex (that is, a family of finite sets closed under the operation of taking subsets), formed by the sets of vertices in the independent sets of G. Any subset of an independent set is itself an independent set, so I(G) is indeed closed under taking subsets.

In mathematics, a queen's graph is a graph that represents all legal moves of the queen—a chess piece—on a chessboard. In the graph, each vertex represents a square on a chessboard, and each edge is a legal move the queen can make, that is, a horizontal, vertical or diagonal move by any number of squares. If the chessboard has dimensions , then the induced graph is called the queen's graph.

A chessboard complex is a particular kind of abstract simplicial complex, which has various applications in topological graph theory and algebraic topology. Informally, the (m, n)-chessboard complex contains all sets of positions on an m-by-n chessboard, where rooks can be placed without attacking each other. Equivalently, it is the matching complex of the (m, n)-complete bipartite graph, or the independence complex of the m-by-n rook's graph.

References

  1. Cockayne, E. J.; Gamble, B.; Shepherd, B. (1986). "Domination parameters for the bishops graph". Discrete Mathematics . 58: 221–227. doi:10.1016/0012-365X(86)90139-1.
  2. Cockayne, E. J. (1990). "Chessboard domination problems". Discrete Mathematics. 86: 13–20. doi:10.1016/0012-365X(90)90344-H.