Block walking

Last updated

In combinatorial mathematics, block walking is a method useful in thinking about sums of combinations graphically as "walks" on Pascal's triangle. As the name suggests, block walking problems involve counting the number of ways an individual can walk from one corner A of a city block to another corner B of another city block given restrictions on the number of blocks the person may walk, the directions the person may travel, the distance from A to B, et cetera.

Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics, from evolutionary biology to computer science, etc.

Pascals triangle triangular array of the binomial coefficients in mathematics

In mathematics, Pascal's triangle is a triangular array of the binomial coefficients. In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in India, Persia (Iran), China, Germany, and Italy.

Contents

An example block walking problem

Suppose such an individual, say "Fred", must walk exactly k blocks to get to a point B that is exactly k blocks from A. It is convenient to regard Fred's starting point A as the origin, , of a rectangular array of lattice points and B as some lattice point , e units "East" and n units "North" of A, where and both and are nonnegative.

Origin (mathematics) point in a Euclidean space used as a reference for geometry of surrounding space

In mathematics, the origin of a Euclidean space is a special point, usually denoted by the letter O, used as a fixed point of reference for the geometry of the surrounding space.

Lattice (group) subgroup of a real vector space or a Lie group

In geometry and group theory, a lattice in is a subgroup of the additive group which is isomorphic to the additive group , and which spans the real vector space . In other words, for any basis of , the subgroup of all linear combinations with integer coefficients of the basis vectors forms a lattice. A lattice may be viewed as a regular tiling of a space by a primitive cell.

Solution by brute force

A "brute force" solution to this problem may be obtained by systematically counting the number of ways Fred can reach each point where

and

without backtracking (i.e. only traveling North or East from one point to another) until a pattern is observed. For example, the number of ways Fred could go from to or (0,1) is exactly one; to (1,1) is two; to (2,0) or (0,2) is one; to (1,2) or (2,1) is three; and so on. Actually, you could receive the number of ways to get to a particular point by adding up the number of ways you can get to the point south of it and the number of ways you can get to the point west of it.(With the starting point being zero and all the points directly north and south of it one.) In general, one soon discovers that the number of paths from A to any such X corresponds to an entry of Pascal's Triangle.

Combinatorial solution

Since the problem involves counting a finite, discrete number of paths between lattice points, it is reasonable to assume a combinatorial solution exists to the problem. Towards this end, we note that for Fred to still be on a path that will take him from A to B over blocks, at any point X he must either travel along one of the unit vectors <1,0> and <0,1>. For the sake of clarity, let and . Given the coordinates of B, regardless of the path Fred travels he must walk along the vectors E and N exactly and times, respectively. As such, the problem reduces to finding the number of distinct rearrangements of the word

In mathematics, the term combinatorial proof is often used to mean either of two types of mathematical proof:

,

which is equivalent to finding the number of ways to choose indistinct objects from a group of . Thus the total number of paths Fred could take from A to B traveling only blocks is

Other problems with known block walking combinatorial proofs

can be done with a straightforward application of block walking. [1]

See also

Related Research Articles

Binomial coefficient family of positive integers that occur as coefficients in the binomial theorem

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n, and it is given by the formula

In mathematics, the Cauchy–Schwarz inequality, also known as the Cauchy–Bunyakovsky–Schwarz inequality, is a useful inequality encountered in many different settings, such as linear algebra, analysis, probability theory, vector algebra and other areas. It is considered to be one of the most important inequalities in all of mathematics.

Quantum harmonic oscillator Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

In mathematics, specifically ring theory, a principal ideal is an ideal in a ring that is generated by a single element of through multiplication by every element of The term also has another, similar meaning in order theory, where it refers to an (order) ideal in a poset generated by a single element which is to say the set of all elements less than or equal to in

Hypergeometric distribution probability distribution

In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure. In contrast, the binomial distribution describes the probability of successes in draws with replacement.

In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.

In calculus, the general Leibniz rule, named after Gottfried Wilhelm Leibniz, generalizes the product rule. It states that if and are -times differentiable functions, then the product is also -times differentiable and its th derivative is given by

The Lenstra–Lenstra–Lovász (LLL) lattice basis reduction algorithm is a polynomial time lattice reduction algorithm invented by Arjen Lenstra, Hendrik Lenstra and László Lovász in 1982. Given a basis with n-dimensional integer coordinates, for a lattice L with , the LLL algorithm calculates an LLL-reduced lattice basis in time

In mathematics, weak convergence in a Hilbert space is convergence of a sequence of points in the weak topology.

Hyperplane separation theorem convex polyhedra

In geometry, the hyperplane separation theorem is a theorem about disjoint convex sets in n-dimensional Euclidean space. There are several rather similar versions. In one version of the theorem, if both these sets are closed and at least one of them is compact, then there is a hyperplane in between them and even two parallel hyperplanes in between them separated by a gap. In another version, if both disjoint convex sets are open, then there is a hyperplane in between them, but not necessarily any gap. An axis which is orthogonal to a separating hyperplane is a separating axis, because the orthogonal projections of the convex bodies onto the axis are disjoint.

Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron.

In combinatorics, the Eulerian numberA(n, m), is the number of permutations of the numbers 1 to n in which exactly m elements are greater than the previous element. They are the coefficients of the Eulerian polynomials:

The partition function or configuration integral, as used in probability theory, information theory and dynamical systems, is a generalization of the definition of a partition function in statistical mechanics. It is a special case of a normalizing constant in probability theory, for the Boltzmann distribution. The partition function occurs in many problems of probability theory because, in situations where there is a natural symmetry, its associated probability measure, the Gibbs measure, has the Markov property. This means that the partition function occurs not only in physical systems with translation symmetry, but also in such varied settings as neural networks, and applications such as genomics, corpus linguistics and artificial intelligence, which employ Markov networks, and Markov logic networks. The Gibbs measure is also the unique measure that has the property of maximizing the entropy for a fixed expectation value of the energy; this underlies the appearance of the partition function in maximum entropy methods and the algorithms derived therefrom.

In mathematics, the Fortuin–Kasteleyn–Ginibre (FKG) inequality is a correlation inequality, a fundamental tool in statistical mechanics and probabilistic combinatorics, due to Cees M. Fortuin, Pieter W. Kasteleyn, and Jean Ginibre (1971). Informally, it says that in many random systems, increasing events are positively correlated, while an increasing and a decreasing event are negatively correlated. It was obtained by studying the random cluster model.

In mathematics, Welch bounds are a family of inequalities pertinent to the problem of evenly spreading a set of unit vectors in a vector space. The bounds are important tools in the design and analysis of certain methods in telecommunication engineering, particularly in coding theory. The bounds were originally published in a 1974 paper by L. R. Welch.

Ideal lattices are a special class of lattices and a generalization of cyclic lattices. Ideal lattices naturally occur in many parts of number theory, but also in other areas. In particular, they have a significant place in cryptography. Micciancio defined a generalization of cyclic lattices as ideal lattices. They can be used in cryptosystems to decrease by a square root the number of parameters necessary to describe a lattice, making them more efficient. Ideal lattices are a new concept, but similar lattice classes have been used for a long time. For example cyclic lattices, a special case of ideal lattices, are used in NTRUEncrypt and NTRUSign.

In statistical mechanics, the Griffiths inequality, sometimes also called Griffiths–Kelly–Sherman inequality or GKS inequality, named after Robert B. Griffiths, is a correlation inequality for ferromagnetic spin systems. Informally, it says that in ferromagnetic spin systems, if the 'a-priori distribution' of the spin is invariant under spin flipping, the correlation of any monomial of the spins is non-negative; and the two point correlation of two monomial of the spins is non-negative.

In mathematics, the connective constant is a numerical quantity associated with self-avoiding walks on a lattice. It is studied in connection with the notion of universality in two-dimensional statistical physics models. While the connective constant depends on the choice of lattice so itself is not universal, it is nonetheless an important quantity that appears in conjectures for universal laws. Furthermore, the mathematical techniques used to understand the connective constant, for example in the recent rigorous proof by Duminil-Copin and Smirnov that the connective constant of the hexagonal lattice has the precise value , may provide clues to a possible approach for attacking other important open problems in the study of self-avoiding walks, notably the conjecture that self-avoiding walks converge in the scaling limit to the Schramm–Loewner evolution.

Lattice path

In combinatorics, a lattice path in of length with steps in is a sequence such that each consecutive difference lies in . A lattice path may lie in any lattice in , but the integer lattice is most commonly used.

Mathematical optimization deals with finding the best solution to a problem from a set of possible solutions. Mostly, the optimization problem is formulated as a minimization problem, where one tries to minimize an error which depends on the solution: the optimal solution has the minimal error. Different optimization techniques are applied in various fields such as mechanics, economics and engineering, and as the complexity and amount of data involved rise, more efficient ways of solving optimization problems are needed. The power of quantum computing may allow solving problems which are not practically feasible on classical computers, or suggest a considerable speed up with respect to the best known classical algorithm. Among other quantum algorithms, there are quantum optimization algorithms which might suggest improvement in solving optimization problems.

References

  1. Lehoczky, Sandor and Richard Rusczyk. The Art of Problem Solving, Volume II. Page 231.