BrO

Last updated

The molecular formula BrO may refer to:

Related Research Articles

A chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and plus (+) and minus (−) signs. These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a chemical name since it does not contain any words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulae can fully specify the structure of only the simplest of molecules and chemical substances, and are generally more limited in power than chemical names and structural formulae.

<span class="mw-page-title-main">Simplified Molecular Input Line Entry System</span> Chemical species structure notation

The Simplified Molecular Input Line Entry System (SMILES) is a specification in the form of a line notation for describing the structure of chemical species using short ASCII strings. SMILES strings can be imported by most molecule editors for conversion back into two-dimensional drawings or three-dimensional models of the molecules.

<span class="mw-page-title-main">Structural formula</span> Graphic representation of a molecular structure

The structural formula of a chemical compound is a graphic representation of the molecular structure, showing how the atoms are possibly arranged in the real three-dimensional space. The chemical bonding within the molecule is also shown, either explicitly or implicitly. Unlike other chemical formula types, which have a limited number of symbols and are capable of only limited descriptive power, structural formulas provide a more complete geometric representation of the molecular structure. For example, many chemical compounds exist in different isomeric forms, which have different enantiomeric structures but the same molecular formula. There are multiple types of ways to draw these structural formulas such as: Lewis structures, condensed formulas, skeletal formulas, Newman projections, Cyclohexane conformations, Haworth projections, and Fischer projections.

<span class="mw-page-title-main">Perbromate</span> Ion

In chemistry, the perbromate ion is the anion having the chemical formula BrO
4
. It is an oxyanion of bromine, the conjugate base of perbromic acid, in which bromine has the oxidation state +7. Unlike its chlorine and iodine analogs, it is difficult to synthesize. It has tetrahedral molecular geometry.

<span class="mw-page-title-main">Copper(I) bromide</span> Chemical compound

Copper(I) bromide is the chemical compound with the formula CuBr. This white diamagnetic solid adopts a polymeric structure akin to that for zinc sulfide. The compound is widely used in the synthesis of organic compounds and as a lasing medium in copper bromide lasers.

<span class="mw-page-title-main">Triphenylarsine</span> Chemical compound

Triphenylarsine is the chemical compound with the formula As(C6H5)3. This organoarsenic compound, often abbreviated AsPh3, is a colorless crystalline solid that is used as a ligand and a reagent in coordination chemistry and organic synthesis. The molecule is pyramidal with As-C distances of 1.942–1.956 Å and C-As-C angles of 99.6–100.5°.

The molecular formula C4H4O4 (molar mass: 116.07 g/mol) may refer to:

<span class="mw-page-title-main">Isomer</span> Chemical compounds with the same molecular formula but different atomic arrangements

In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element – but distinct arrangements of atoms in space. Isomerism refers to the existence or possibility of isomers.

<span class="mw-page-title-main">Bromine dioxide</span> Chemical compound

Bromine dioxide is the chemical compound composed of bromine and oxygen with the formula BrO2. It forms unstable yellow to yellow-orange crystals. It was first isolated by R. Schwarz and M. Schmeißer in 1937 and is hypothesized to be important in the atmospheric reaction of bromine with ozone. It is similar to chlorine dioxide, the dioxide of its halogen neighbor one period higher on the periodic table.

The molecular formula C11H16BrNO3 (molar mass: 290.153 g/mol) may refer to:

The molecular formula C13H18N2O (molar mass : 218.29 g/mol, exact mass : 218.141913) may refer to :

The molecular formula C15H22N2O (molar mass : 246.35 g/mol) may refer to:

The molecular formula C3H7O6P may refer to:

In chemistry, molecular oxohalides (oxyhalides) are a group of chemical compounds in which both oxygen and halogen atoms are attached to another chemical element A in a single molecule. They have the general formula AOmXn, where X is a halogen. Known oxohalides have fluorine (F), chlorine (Cl), bromine (Br), and/or iodine (I) in their molecules. The element A may be a main group element, a transition element, a rare earth element or an actinide. The term oxohalide, or oxyhalide, may also refer to minerals and other crystalline substances with the same overall chemical formula, but having an ionic structure.

<span class="mw-page-title-main">Iodite</span> Ion

The iodite ion, or iodine dioxide anion, is the halite with the chemical formula IO
2
. Within the ion, the iodine exists in the oxidation state of +3.

<span class="mw-page-title-main">Dibromine monoxide</span> Chemical compound

Dibromine monoxide is the chemical compound composed of bromine and oxygen with the formula Br2O. It is a dark brown solid which is stable below −40 °C and is used in bromination reactions. It is similar to dichlorine monoxide, the monoxide of its halogen neighbor one period higher on the periodic table. The molecule is bent, with C2v molecular symmetry. The Br−O bond length is 1.85 Å and the Br−O−Br bond angle is 112°, similar to dichlorine monoxide.

<span class="mw-page-title-main">Dibromine trioxide</span> Chemical compound

Dibromine trioxide is the chemical compound composed of bromine and oxygen with the formula Br2O3. It is an orange solid that is stable below −40 °C. It has the structure Br−O−BrO2 (bromine bromate). It was discovered in 1993. The bond angle of Br−O−Br is 111.7°, the bond angle of O−Br=O is 103.1°, and the bond angle of O=Br=O is 107.6°. The Br−OBrO2 bond length is 1.845 Å, the O−BrO2 bond length is 1.855 Å and the Br=O bond length is 1.612 Å.

The molecular formula C3H5O3 (molar mass: 89.07 g/mol) may refer to:

Benzoin may refer to:

The molecular formula C19H26O4 (molar mass: 318.407 g/mol, exact mass: 318.1831 u) may refer to: