Bromalite

Last updated

Bromalites are the fossilized remains of material sourced from the digestive system of organisms. As such, they can be broadly considered to be trace fossils. The most well-known types of bromalites are fossilized faeces or coprolites. However, other types are recognised, including: regurgitalites (fossilized remains of vomit or other regurgitated objects such as owl pellets); cololites (intestinal contents); and gastrolites (stomach contents). Regurgtitalites and coprolites are thus essentially known only after they have left the body of the producing organisms, whereas gastrolites and cololites are found in situ in their respective organs, but there are rare exceptions (see Seilacher, 2002).

Whilst coprolites and regurgitalites are often difficult to tie to a specific producer, all bromalites potentially provide important and sometimes unique evidence concerning diet and other trophic factors. They are thus useful indicators for reconstructing ancient food webs in palaeoecology.

Related Research Articles

<span class="mw-page-title-main">Fossil</span> Preserved remains or traces of organisms from a past geological age

A fossil is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved in amber, hair, petrified wood and DNA remnants. The totality of fossils is known as the fossil record. Though the fossil record is incomplete, numerous studies have demonstrated that there is enough information available to give a good understanding of the pattern of diversification of life on Earth. In addition, the record can predict and fill gaps such as the discovery of Tiktaalik in the arctic of Canada.

<span class="mw-page-title-main">Taphonomy</span> Study of decomposition and fossilization of organisms

Taphonomy is the study of how organisms decay and become fossilized or preserved in the paleontological record. The term taphonomy was introduced to paleontology in 1940 by Soviet scientist Ivan Efremov to describe the study of the transition of remains, parts, or products of organisms from the biosphere to the lithosphere.

<i>Charnia</i> Genus of frond-like lifeforms

Charnia is an extinct genus of frond-like lifeforms belonging to the Ediacaran biota with segmented, leaf-like ridges branching alternately to the right and left from a zig-zag medial suture. The genus Charnia was named after Charnwood Forest in Leicestershire, England, where the first fossilised specimen was found. Charnia is significant because it was the first Precambrian fossil to be recognized as such.

<span class="mw-page-title-main">Trace fossil</span> Geological record of biological activity

A trace fossil, also known as an ichnofossil, is a fossil record of biological activity by lifeforms but not the preserved remains of the organism itself. Trace fossils contrast with body fossils, which are the fossilized remains of parts of organisms' bodies, usually altered by later chemical activity or by mineralization. The study of such trace fossils is ichnology - the work of ichnologists.

<span class="mw-page-title-main">Coprolite</span> Fossilized feces

A coprolite is fossilized feces. Coprolites are classified as trace fossils as opposed to body fossils, as they give evidence for the animal's behaviour rather than morphology. The name is derived from the Greek words κόπρος and λίθος. They were first described by William Buckland in 1829. Before this, they were known as "fossil fir cones" and "bezoar stones". They serve a valuable purpose in paleontology because they provide direct evidence of the predation and diet of extinct organisms. Coprolites may range in size from a few millimetres to over 60 centimetres.

<span class="mw-page-title-main">Macrofossil</span>

Macrofossils, also known as megafossils, are the preserved remnants of organic beings and their activities that are large enough to be visible without a microscope. The term macrofossil stands in opposition to the term microfossil. Microfossils, by contrast, require substantial magnification for evaluation by fossil-hunters or professional paleontologists. As a result, most fossils observed in the field and most specimens are macrofossils. Macrofossils come in many varieties and form in various ways depending on their environment and what is being fossilized including plant, fungi and animal remnants.

Regurgitalites or sometimes Regurgitaliths are the fossilized remains of stomach contents that have been regurgitated by an animal, such as an owl pellet. They are bromalite trace fossils and can be subdivided into ichnotaxa. Regurgitaliths might provide useful information on the diet of the animal, but are difficult to relate to any particular species.

Trace fossils are classified in various ways for different purposes. Traces can be classified taxonomically, ethologically, and toponomically, that is, according to their relationship to the surrounding sedimentary layers. Except in the rare cases where the original maker of a trace fossil can be identified with confidence, phylogenetic classification of trace fossils is an unreasonable proposition.

<span class="mw-page-title-main">Adolf Seilacher</span> German paleontologist

Adolf "Dolf" Seilacher was a German palaeontologist who worked in evolutionary and ecological palaeobiology for over 60 years. He is best known for his contributions to the study of trace fossils; constructional morphology and structuralism; biostratinomy, Lagerstätten and the Ediacaran biota.

<span class="mw-page-title-main">Ediacaran biota</span> Life of the Ediacaran period

The Ediacaranbiota is a taxonomic period classification that consists of all life forms that were present on Earth during the Ediacaran Period. These were enigmatic tubular and frond-shaped, mostly sessile, organisms. Trace fossils of these organisms have been found worldwide, and represent the earliest known complex multicellular organisms. The term "Ediacara biota" has received criticism from some scientists due to its alleged inconsistency, arbitrary exclusion of certain fossils, and inability to be precisely defined.

<span class="mw-page-title-main">Form classification</span> Classification of organisms based on their morphology

Form classification is the classification of organisms based on their morphology, which does not necessarily reflect their biological relationships. Form classification, generally restricted to palaeontology, reflects uncertainty; the goal of science is to move "form taxa" to biological taxa whose affinity is known.

<i>Paleodictyon</i> Trace fossil

Paleodictyon is a trace fossil, usually interpreted to be a burrow, which appears in the geologic marine record beginning in the Precambrian/Early Cambrian and in modern ocean environments. Paleodictyon were first described by Giuseppe Meneghini in 1850. The origin of the trace fossil is enigmatic and numerous candidates have been proposed.

The Burgess Shale of British Columbia is famous for its exceptional preservation of mid-Cambrian organisms. Around 69 other sites have been discovered of a similar age, with soft tissues preserved in a similar, though not identical, fashion. Additional sites with a similar form of preservation are known from the Ediacaran and Ordovician periods.

<span class="mw-page-title-main">Microbial mat</span> Multi-layered sheet of microorganisms

A microbial mat is a multi-layered sheet or biofilm of microbial colonies, composed of mainly bacteria and/or archaea. Microbial mats grow at interfaces between different types of material, mostly on submerged or moist surfaces, but a few survive in deserts. A few are found as endosymbionts of animals.

<span class="mw-page-title-main">Archaeoparasitology</span> Study of parasites in archaeological contexts

Archaeoparasitology, a multi-disciplinary field within paleopathology, is the study of parasites in archaeological contexts. It includes studies of the protozoan and metazoan parasites of humans in the past, as well as parasites which may have affected past human societies, such as those infesting domesticated animals.

A megabias, or a taphonomic megabias, is a large-scale pattern in the quality of the fossil record that affects paleobiologic analysis at provincial to global levels and at timescales usually exceeding ten million years. It can result from major shifts in intrinsic and extrinsic properties of organisms, including morphology and behaviour in relation to other organisms, or shifts in the global environment, which can cause secular or long-term cyclic changes in preservation.

<span class="mw-page-title-main">Blackberry Hill</span> A Lagerstätte located in Wisconsin

Blackberry Hill is a Konservat-Lagerstätte of Cambrian age located within the Elk Mound Group in Marathon County, Wisconsin. It is found in a series of quarries and outcrops that are notable for their large concentration of exceptionally preserved trace fossils in Cambrian tidal flats. One quarry in particular also has the distinction of preserving some of the first land animals. These are preserved as three-dimensional casts, which is unusual for Cambrian animals that are only lightly biomineralized. Additionally, Blackberry Hill is the first occurrence recognized to include Cambrian mass strandings of scyphozoans (jellyfish).

<i>Arumberia</i> Trace fossil

Arumberia is an enigmatic fossil from the Ediacaran period originally described from the Arumbera Sandstone, Northern Territory, Australia but also found in the Urals, East Siberia, England and Wales, Northern France, the Avalon Peninsula and India. Several morphologically distinct species are recognized.

<i>Medusinites</i> Extinct genus of cnidarians

Medusinites is a genus of disc shaped fossilised organisms associated with the Ediacaran biota. They have been found in rocks dated to be 580 to 541 million years old.

References

Shelton, C. D. (2013). "A new method to determine volume of bromalites: Morphometrics of Lower Permian (Archer City Formation) heteropolar bromalites". Swiss Journal of Palaeontology . 132 (2): 221–238. doi:10.1007/s13358-013-0057-z. S2CID   129158414.Aldridge, R. J.; Gabbott, S. E.; Siveter, L. J.; Theron, J. N. (2006). "Bromalites from the Soom Shale Lagerstätte (Upper Ordovician) of South Africa: Palaeoecological and palaeobiological implications". Palaeontology. 49 (4): 857. doi: 10.1111/j.1475-4983.2006.00570.x . Seilacher, A. 2002. Non olet: The strange taphonomy of coprolites and cololites. 233-240 pp., In: (M. De Renzi, M. Pardo, M. Belinchón, E. Peñalver, P. Montoya & A. Márquez Aliaga, Eds), Current Topics on Taphonomy and Fossilization. Ayuntamiento de Valencia: 544 pp. Valencia.