C29H48O

Last updated

The molecular formula C29H48O (molar mass: 412.69 g/mol) may refer to:


Related Research Articles

Lipid A substance of biological origin that is soluble in nonpolar

In biology and biochemistry, a lipid is a biomolecule that is soluble in nonpolar solvents. Non-polar solvents are typically hydrocarbons used to dissolve other naturally occurring hydrocarbon lipid molecules that do not dissolve in water, including fatty acids, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides, triglycerides, and phospholipids.

Steroid Any organic compound having sterane as a core structure

A steroid is a biologically active organic compound with four rings arranged in a specific molecular configuration. Steroids have two principal biological functions: as important components of cell membranes which alter membrane fluidity; and as signaling molecules. Hundreds of steroids are found in plants, animals and fungi. All steroids are manufactured in cells from the sterols lanosterol (opisthokonts) or cycloartenol (plants). Lanosterol and cycloartenol are derived from the cyclization of the triterpene squalene.

Cholecalciferol chemical compound

Cholecalciferol, also known as vitamin D3 and colecalciferol, is a type of vitamin D which is made by the skin when exposed to sunlight; it is also found in some foods and can be taken as a dietary supplement. It is used to treat and prevent vitamin D deficiency and associated diseases, including rickets. It is also used for familial hypophosphatemia, hypoparathyroidism that is causing low blood calcium, and Fanconi syndrome. Vitamin-D supplements may not be effective in people with severe kidney disease. It is usually taken by mouth.

Adolf Windaus German chemist

Adolf Otto Reinhold Windaus was a German chemist who won a Nobel Prize in Chemistry in 1928 for his work on sterols and their relation to vitamins. He was the doctoral advisor of Adolf Butenandt who also won a Nobel Prize in Chemistry in 1939. He was born in Berlin, Germany on December 25, 1876 to a family who owned a drapery business. He attended a prestigious French grammar school, where he focused primarily on literature. Windaus began studying medicine at the University of Berlin in about 1895 then proceeded to study chemistry at the University of Freiburg. He married Elizabeth Resau in 1915 and they had three children together, Gunter, Gustav, and Margarete. After earning his PhD in medicine, Windaus became the head of the chemical institute at the University of Göttingen from 1915 to 1944. Throughout his life, Windaus won many awards including the Goethe Medal, the Pasteur Medal, and the Nobel Prize for Chemistry. In addition to his many accomplishments and discoveries in science, Windaus was also one of the very few German chemists who did not work with the Nazis and openly opposed their regime. As the head of the chemical institute at the University of Göttingen, Windaus personally defended one of his Jewish graduate students from dismissal. Windaus believed that while every man had a moral code, his science was motivated by curiosity, and was not driven by politics, ethics, and applications of his discoveries. This viewpoint caused Windaus to decline to research poison gas during World War I.

Ergosterol chemical compound

Ergosterol (ergosta-5,7,22-trien-3β-ol) is a sterol found in cell membranes of fungi and protozoa, serving many of the same functions that cholesterol serves in animal cells. Because many fungi and protozoa cannot survive without ergosterol, the enzymes that synthesize it have become important targets for drug discovery. In human nutrition, ergosterol is a provitamin form of vitamin D2; exposure to ultraviolet (UV) light causes a chemical reaction that produces vitamin D2.

Microalgae Microscopic algae, typically found in freshwater and marine systems, living in both the water column and sediment

Microalgae or microphytes are microscopic algae, typically found in freshwater and marine systems, living in both the water column and sediment. They are unicellular species which exist individually, or in chains or groups. Depending on the species, their sizes can range from a few micrometers (μm) to a few hundred micrometers. Unlike higher plants, microalgae do not have roots, stems, or leaves. They are specially adapted to an environment dominated by viscous forces. Microalgae, capable of performing photosynthesis, are important for life on earth; they produce approximately half of the atmospheric oxygen and use simultaneously the greenhouse gas carbon dioxide to grow photoautotrophically. Microalgae, together with bacteria, form the base of the food web and provide energy for all the trophic levels above them. Microalgae biomass is often measured with chlorophyll a concentrations and can provide a useful index of potential production. The standing stock of microphytes is closely related to that of its predators. Without grazing pressures the standing stock of microphytes dramatically decreases.

Stanol ester

Stanol esters is a heterogeneous group of chemical compounds known to reduce the level of low-density lipoprotein (LDL) cholesterol in blood when ingested, though to a much lesser degree than prescription drugs such as statins. The starting material is phytosterols from plants. These are first hydrogenated to give a plant stanol which is then esterified with a mixture of fatty acids also derived from plants. Plant stanol esters are found naturally occurring in small quantities in fruits, vegetables, nuts, seeds, cereals, legumes, and vegetable oils.

Sterol any organic compound that is a steroid having a hydroxyl group attached to C3 position

Sterols, also known as steroid alcohols, are a subgroup of the steroids and an important class of organic molecules. They are a type of lipid. They occur naturally in plants, animals, and fungi, and can be also produced by some bacteria. The most familiar type of animal sterol is cholesterol, which is vital to cell membrane structure, and functions as a precursor to fat-soluble vitamins and steroid hormones.

Brassicasterol chemical compound

Brassicasterol is a 28-carbon sterol synthesised by several unicellular algae (phytoplankton) and some terrestrial plants, like rape. This compound has frequently been used as a biomarker for the presence of (marine) algal matter in the environment, and is one of the ingredients for E number E499.

Campesterol chemical compound

Campesterol is a phytosterol whose chemical structure is similar to that of cholesterol, and is one of the ingredients for E number E499.

Stigmasterol chemical compound

Stigmasterol – a plant sterol (phytosterol) – is among the most abundant of plant sterols, having a major function to maintain the structure and physiology of cell membranes. In the European Union, it is a food additive listed with E number E499, and may be used in food manufacturing to increase the phytosterol content, potentially lowering the levels of LDL cholesterol.

Sir Ian Morris Heilbron DSO FRS was a Scottish chemist, who pioneered organic chemistry developed for therapeutic and industrial use.

7-Dehydrocholesterol reductase mammalian protein found in Homo sapiens

7-Dehydrocholesterol reductase, also known as DHCR7, is a protein that in humans is encoded by the DHCR7 gene.

CYP27A1 protein-coding gene in the species Homo sapiens

CYP27A1 is a gene encoding a cytochrome P450 oxidase, and is commonly known as sterol 27-hydroxylase. This enzyme is located in many different tissues where it is found within the mitochondria. It is most prominently involved in the biosynthesis of bile acids.

7-Dehydrositosterol chemical compound

7-Dehydrositosterol is a sterol which serves as a precursor for sitocalciferol (vitamin D5).

Lanosterol 14 alpha-demethylase protein-coding gene in the species Homo sapiens

Lanosterol 14α-demethylase (CYP51A1) is a cytochrome P450 enzyme that is involved in the conversion of lanosterol to 4,4-dimethylcholesta-8(9),14,24-trien-3β-ol. The cytochrome P450 isoenzymes are a conserved group of proteins that serve as key players in the metabolism of organic substances and the biosynthesis of important steroids, lipids, and vitamins in eukaryotes. As a member of this family, lanosterol 14α-demethylase is responsible for an essential step in the biosynthesis of sterols. In particular, this protein catalyzes the removal of the C-14α-methyl group from lanosterol. This demethylation step is regarded as the initial checkpoint in the transformation of lanosterol to other sterols that are widely used within the cell.

Response elements are short sequences of DNA within a gene promoter or enhancer region that are able to bind specific transcription factors and regulate transcription of genes.

Vitamin D Group of molecules used as vitamin

Vitamin D is a group of fat-soluble secosteroids responsible for increasing intestinal absorption of calcium, magnesium, and phosphate, and multiple other biological effects. In humans, the most important compounds in this group are vitamin D3 (also known as cholecalciferol) and vitamin D2 (ergocalciferol).

Robert Kenneth Callow, FRS was a British biochemist. He worked at the National Institute for Medical Research in Hampstead and Mill Hill, where his work on steroids included contributions to the isolation and characterisation of vitamin D, and the synthesis of cortisone from naturally occurring steroids. After he retired from the NIMR in 1966 he worked on insect pheromones at Rothamsted Experimental Station until 1971.