Casas-Alvero conjecture

Last updated
Dr. Casas-Alvero talking about the conjecture in a conference in the University of Barcelona on March 16, 2016. Dr. Casas-Alvero talking about Casas-Alvero Conjecture.jpg
Dr. Casas-Alvero talking about the conjecture in a conference in the University of Barcelona on March 16, 2016.

In mathematics, the Casas-Alvero conjecture is an open problem about polynomials which have factors in common with their derivatives, proposed by Eduardo Casas-Alvero in 2001.

Contents

Formal statement

Let f be a polynomial of degree d defined over a field K of characteristic zero. If f has a factor in common with each of its derivatives f(i), i = 1, ..., d  1, then the conjecture predicts that f must be a power of a linear polynomial.

Analogue in non-zero characteristic

The conjecture is false over a field of characteristic p: any inseparable polynomial f(Xp) without constant term satisfies the condition since all derivatives are zero. Another, separable, counterexample is Xp+1  Xp

Special cases

The conjecture is known to hold in characteristic zero for degrees of the form pk or 2pk where p is prime and k is a positive integer. Similarly, it is known for degrees of the form 3pk where p  2, for degrees of the form 4pk where p  3, 5, 7, and for degrees of the form 5pk where p  2, 3, 7, 11, 131, 193, 599, 3541, 8009. Similar results are available for degrees of the form 6pk and 7pk. It has recently been established for d = 12, making d = 20 the smallest open degree.

Related Research Articles

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

In mathematics, a transcendental number is a number that is not algebraic—that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best known transcendental numbers are π and e.

In mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry and complex geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties.

In mathematics, a polynomial P(X) over a given field K is separable if its roots are distinct in an algebraic closure of K, that is, the number of distinct roots is equal to the degree of the polynomial.

In field theory, a subfield of algebra, an algebraic field extension is called a separable extension if for every , the minimal polynomial of over F is a separable polynomial. There is also a more general definition that applies when E is not necessarily algebraic over F. An extension that is not separable is said to be inseparable.

In mathematics, the Jacobian conjecture is a famous unsolved problem concerning polynomials in several variables. It states that if a polynomial function from an n-dimensional space to itself has Jacobian determinant which is a non-zero constant, then the function has a polynomial inverse. It was first conjectured in 1939 by Ott-Heinrich Keller, and widely publicized by Shreeram Abhyankar, as an example of a difficult question in algebraic geometry that can be understood using little beyond a knowledge of calculus.

In mathematics, Hilbert's fourteenth problem, that is, number 14 of Hilbert's problems proposed in 1900, asks whether certain algebras are finitely generated.

Hilbert's seventeenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It concerns the expression of positive definite rational functions as sums of quotients of squares. The original question may be reformulated as:

In mathematics, Khovanov homology is an oriented link invariant that arises as the homology of a chain complex. It may be regarded as a categorification of the Jones polynomial.

In mathematics, a field F is called quasi-algebraically closed (or C1) if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper (Tsen 1936); and later by Serge Lang in his 1951 Princeton University dissertation and in his 1952 paper (Lang 1952). The idea itself is attributed to Lang's advisor Emil Artin.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

The mathematician Irving Kaplansky is notable for proposing numerous conjectures in several branches of mathematics, including a list of ten conjectures on Hopf algebras. They are usually known as Kaplansky's conjectures.

The Ax–Kochen theorem, named for James Ax and Simon B. Kochen, states that for each positive integer d there is a finite set Yd of prime numbers, such that if p is any prime not in Yd then every homogeneous polynomial of degree d over the p-adic numbers in at least d2 + 1 variables has a nontrivial zero.

In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them.

In algebraic geometry, a supersingular K3 surface is a K3 surface over a field k of characteristic p > 0 such that the slopes of Frobenius on the crystalline cohomology H2(X,W ) are all equal to 1. These have also been called Artin supersingular K3 surfaces. Supersingular K3 surfaces can be considered the most special and interesting of all K3 surfaces.

In mathematics, a permutation polynomial is a polynomial that acts as a permutation of the elements of the ring, i.e. the map is a bijection. In case the ring is a finite field, the Dickson polynomials, which are closely related to the Chebyshev polynomials, provide examples. Over a finite field, every function, so in particular every permutation of the elements of that field, can be written as a polynomial function.

In algebraic geometry, a variety over a field k is ruled if it is birational to the product of the projective line with some variety over k. A variety is uniruled if it is covered by a family of rational curves. The concept arose from the ruled surfaces of 19th-century geometry, meaning surfaces in affine space or projective space which are covered by lines. Uniruled varieties can be considered to be relatively simple among all varieties, although there are many of them.

Alexander Varchenko

Alexander Nikolaevich Varchenko is a Soviet and Russian mathematician working in geometry, topology, combinatorics and mathematical physics.

Bernstein's theorem is an inequality relating the maximum modulus of a complex polynomial function on the unit disk with the maximum modulus of its derivative on the unit disk. It was proven by Sergei Bernstein while he was working on approximation theory.

Eduardo Casas-Alvero is a Spanish mathematician and a professor at the University of Barcelona. His work lies in algebraic geometry and commutative algebra, especially curve theory. One of his main contributions has been the Casas-Alvero conjecture characterizing certain polynomials whose factors match their derivatives as powers of a linear polynomial.

References