Chaplygin's theorem

Last updated

In mathematical theory of differential equations the Chaplygin's theorem (Chaplygin's method) states about existence and uniqueness of the solution to an initial value problem for the first order explicit ordinary differential equation. This theorem was stated by Sergey Chaplygin. [1] It is one of many comparison theorems.

Contents

Important definitions

Consider an initial value problem: differential equation

in ,

with an initial condition

.

For the initial value problem described above the upper boundary solution and the lower boundary solution are the functions and respectively, both of which are smooth in and continous in , such as the following inequalities are true:

  1. ;
  2. and for .

Statement [2] [3]

Given the aforementioned initial value problem and respective upper boundary solution and lower boundary solution for . If the right part

  1. is continous in , ;
  2. satisfies the Lipschitz condition over variable between functions and : there exists constant such as for every , , the inequality

holds,

then in there exists one and only one solution for the given initial value problem and moreover for all

.

Remarks [2]

Weakning inequalities

Inside inequalities within both of definitions of the upper boundary solution and the lower boundary solution signs of inequalities (all at once) can be altered to unstrict. As a result, inequalities sings at Chaplygin's theorem concusion would change to unstrict by and respectively. In particular, any of , could be chosen.

Proving inequality only

If is already known to be an existent soltion for the initial value problem in , the Lipschitz condition requirement can be omitted entirely for proving the resulting inequality. There exists applications for this method while researching whether the solution is stable or not ( [2] , pp. 7–9). This is often called "Differential inequality method" in literature [4] [5] and, for example, Grönwall's inequality can be proven using this technique. [5]

Continuation of the solution towards positive infinity

Chaplygin's theorem answers the question about existence and uniqueness of the solution in and the constant from the Lipschitz condition is, generally speaking, dependent on : . If for both functions and retain their smoothness and for a set is bounded, the theorem holds for all .

Related Research Articles

The Cauchy–Schwarz inequality is an upper bound on the inner product between two vectors in an inner product space in terms of the product of the vector norms. It is considered one of the most important and widely used inequalities in mathematics.

<span class="mw-page-title-main">Lipschitz continuity</span> Strong form of uniform continuity

In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the Lipschitz constant of the function. For instance, every function that is defined on an interval and has a bounded first derivative is Lipschitz continuous.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In mathematics, a self-adjoint operator on a complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

<span class="mw-page-title-main">Green's function</span> Impulse response of an inhomogeneous linear differential operator

In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form where a0(x), ..., an(x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y(n) are the successive derivatives of an unknown function y of the variable x.

In mathematics, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: where is an integral operator acting on u. Hence, integral equations may be viewed as the analog to differential equations where instead of the equation involving derivatives, the equation contains integrals. A direct comparison can be seen with the mathematical form of the general integral equation above with the general form of a differential equation which may be expressed as follows:where may be viewed as a differential operator of order i. Due to this close connection between differential and integral equations, one can often convert between the two. For example, one method of solving a boundary value problem is by converting the differential equation with its boundary conditions into an integral equation and solving the integral equation. In addition, because one can convert between the two, differential equations in physics such as Maxwell's equations often have an analog integral and differential form. See also, for example, Green's function and Fredholm theory.

In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form for given functions , and , together with some boundary conditions at extreme values of . The goals of a given Sturm–Liouville problem are:

In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.

In mathematics, specifically the study of differential equations, the Picard–Lindelöf theorem gives a set of conditions under which an initial value problem has a unique solution. It is also known as Picard's existence theorem, the Cauchy–Lipschitz theorem, or the existence and uniqueness theorem.

<span class="mw-page-title-main">Envelope (mathematics)</span> Curve external to a family of curves in geometry

In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

In mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are real constants C ≥ 0, α > 0, such that for all x and y in the domain of f. More generally, the condition can be formulated for functions between any two metric spaces. The number is called the exponent of the Hölder condition. A function on an interval satisfying the condition with α > 1 is constant. If α = 1, then the function satisfies a Lipschitz condition. For any α > 0, the condition implies the function is uniformly continuous. The condition is named after Otto Hölder.

In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces. These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Rellich–Kondrachov theorem showing that under slightly stronger conditions some Sobolev spaces are compactly embedded in others. They are named after Sergei Lvovich Sobolev.

Projected dynamical systems is a mathematical theory investigating the behaviour of dynamical systems where solutions are restricted to a constraint set. The discipline shares connections to and applications with both the static world of optimization and equilibrium problems and the dynamical world of ordinary differential equations. A projected dynamical system is given by the flow to the projected differential equation

In mathematics, specifically in the study of ordinary differential equations, the Peano existence theorem, Peano theorem or Cauchy–Peano theorem, named after Giuseppe Peano and Augustin-Louis Cauchy, is a fundamental theorem which guarantees the existence of solutions to certain initial value problems.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

<span class="mw-page-title-main">Ordinary differential equation</span> Differential equation containing derivatives with respect to only one variable

In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown(s) consists of one function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with partial differential equations (PDEs) which may be with respect to more than one independent variable, and, less commonly, in contrast with stochastic differential equations (SDEs) where the progression is random.

In mathematics, the Cauchy–Kovalevskaya theorem is the main local existence and uniqueness theorem for analytic partial differential equations associated with Cauchy initial value problems. A special case was proven by Augustin Cauchy, and the full result by Sofya Kovalevskaya.

In number theory, specifically in Diophantine approximation theory, the Markov constant of an irrational number is the factor for which Dirichlet's approximation theorem can be improved for .

References

  1. Bogolubov, Alexey (1983). Математики. Механики. Биографический справочник[Mathematicians. Mechanics. Biographical handbook.] (in Russian) (1st ed.). Kiev, Ukraine: Киев: Наукова думка. pp. 515–516. ISBN   978-5-906923-56-1.
  2. 1 2 3 Vasilyeva, Adelaida (2007). "Теоремы сравнения. Метод дифференциальных неравенств Чаплыгина" [Comparison theorems. Chaplygin's differential inequalities method.](PDF). Кафедра математики физического факультета МГУ (in Russian). pp. 4–5. Retrieved 2024-08-28.
  3. Nefedov, Nikolay (2019-06-09). "Дифференциальные уравнения -- Лекции" [Differential equations -- Lections](PDF). Teach-In (in Russian). Retrieved 2024-08-28.
  4. Nefedov, Nikolay (2016). "Обыкновенные дифференциальные уравнения. Курс лекций" [Ordinary differential equations. Lection series.](PDF). Кафедра математики физического факультета МГУ (in Russian). p. 60. Retrieved 2024-08-30.{{cite web}}: CS1 maint: url-status (link)
  5. 1 2 Hale, Jack (1980). Ordinary differential equations. Pure and applied Mathematics (2nd ed.). Malabar, Fla: Krieger. pp. 30–37. ISBN   978-0-89874-011-0.

Further reading

  1. Komlenko, Yuriy (1967-09-01). "Chaplygin's theorem for a second-order linear differential equation with lagging argument". Mathematical Notes of the Academy of Sciences of the USSR. 2 (3): 666–669. doi:10.1007/BF01094057. ISSN   1573-8876.