Chrystal's equation

Last updated

In mathematics, Chrystal's equation is a first order nonlinear ordinary differential equation, named after the mathematician George Chrystal, who discussed the singular solution of this equation in 1896. [1] The equation reads as [2] [3]

where are constants, which upon solving for , gives

This equation is a generalization of Clairaut's equation since it reduces to Clairaut's equation under certain condition as given below.

Solution

Introducing the transformation gives

Now, the equation is separable, thus

The denominator on the left hand side can be factorized if we solve the roots of the equation and the roots are , therefore

If , the solution is

where is an arbitrary constant. If , () then the solution is

When one of the roots is zero, the equation reduces to Clairaut's equation and a parabolic solution is obtained in this case, and the solution is

The above family of parabolas are enveloped by the parabola , therefore this enveloping parabola is a singular solution.

Related Research Articles

In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g. More precisely, if is the function such that for every x, then the chain rule is, in Lagrange's notation,

<span class="mw-page-title-main">Quadratic function</span> Polynomial function of degree two

In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before the 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".

In mathematics, an implicit equation is a relation of the form where R is a function of several variables. For example, the implicit equation of the unit circle is

In physics, Wick rotation, named after Italian physicist Gian Carlo Wick, is a method of finding a solution to a mathematical problem in Minkowski space from a solution to a related problem in Euclidean space by means of a transformation that substitutes an imaginary-number variable for a real-number variable. This transformation is also used to find solutions to problems in quantum mechanics and other areas.

<span class="mw-page-title-main">Completing the square</span> Method for solving quadratic equations

In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

<span class="mw-page-title-main">Separation of variables</span> Technique for solving differential equations

In mathematics, separation of variables is any of several methods for solving ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs on a different side of the equation.

In multivariate calculus, a differential or differential form is said to be exact or perfect, as contrasted with an inexact differential, if it is equal to the general differential for some differentiable function  in an orthogonal coordinate system.

In mathematical analysis, Clairaut's equation is a differential equation of the form

In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, although more generally the method of characteristics is valid for any hyperbolic partial differential equation. The method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data given on a suitable hypersurface.

<span class="mw-page-title-main">Envelope (mathematics)</span> Family of curves in geometry

In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.

In mathematics, the Euler–Tricomi equation is a linear partial differential equation useful in the study of transonic flow. It is named after mathematicians Leonhard Euler and Francesco Giacomo Tricomi.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

<span class="mw-page-title-main">Curved space</span>

Curved space often refers to a spatial geometry which is not "flat", where a flat space has zero curvature, as described by Euclidean geometry. Curved spaces can generally be described by Riemannian geometry though some simple cases can be described in other ways. Curved spaces play an essential role in general relativity, where gravity is often visualized as curved space. The Friedmann–Lemaître–Robertson–Walker metric is a curved metric which forms the current foundation for the description of the expansion of space and shape of the universe.

<span class="mw-page-title-main">Multiple integral</span> Generalization of definite integrals to functions of multiple variables

In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in (the real-number plane) are called double integrals, and integrals of a function of three variables over a region in (real-number 3D space) are called triple integrals. For multiple integrals of a single-variable function, see the Cauchy formula for repeated integration.

In mathematics, in the theory of ordinary differential equations in the complex plane , the points of are classified into ordinary points, at which the equation's coefficients are analytic functions, and singular points, at which some coefficient has a singularity. Then amongst singular points, an important distinction is made between a regular singular point, where the growth of solutions is bounded by an algebraic function, and an irregular singular point, where the full solution set requires functions with higher growth rates. This distinction occurs, for example, between the hypergeometric equation, with three regular singular points, and the Bessel equation which is in a sense a limiting case, but where the analytic properties are substantially different.

A differential equation can be homogeneous in either of two respects.

In the mathematical theory of partial differential equations (PDE), the Monge cone is a geometrical object associated with a first-order equation. It is named for Gaspard Monge. In two dimensions, let

<span class="mw-page-title-main">Multiscroll attractor</span> Strange attractor connected by two 2-dimensional rings

In the mathematics of dynamical systems, the double-scroll attractor is a strange attractor observed from a physical electronic chaotic circuit with a single nonlinear resistor. The double-scroll system is often described by a system of three nonlinear ordinary differential equations and a 3-segment piecewise-linear equation. This makes the system easily simulated numerically and easily manifested physically due to Chua's circuits' simple design.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. Chrystal G., "On the p-discriminant of a Differential Equation of the First order and on Certain Points in the General Theory of Envelopes Connected Therewith.", Trans. Roy. Soc. Edin, Vol. 38, 1896, pp. 803–824.
  2. Davis, Harold Thayer. Introduction to nonlinear differential and integral equations. Courier Corporation, 1962.
  3. Ince, E. L. (1939). Ordinary Differential Equations, London (1927). Google Scholar.