Cohen's cryptosystem

Last updated

Cohen's cryptosystem [1] is a public-key cryptosystem proposed in 1998 by Bram Cohen.

Contents

Key generation

In Cohen's cryptosystem, private key is a positive integer .

The algorithm uses public-keys defined as follows:

Generate random integers chosen randomly and uniformly between and . Where is some bound.

Let and generate random integers chosen randomly and uniformly between and .

Define .

Encrypting a bit

To encrypt a bit Alice randomly adds public keys and multiplies the result by either 1 (if she wishes to send a 0) or by 1 (if she wishes to send a 1) to obtain the ciphertext .

De-cryption

To de-crypt, Bob computes

It is easy to see that if then . However, if then . Hence Bob can read the bit sent by Alice on the most significant bit of h.

Related Research Articles

RSA (Rivest–Shamir–Adleman) is one of the first public-key cryptosystems and is widely used for secure data transmission. In such a cryptosystem, the encryption key is public and distinct from the decryption key which is kept secret (private). In RSA, this asymmetry is based on the practical difficulty of factoring the product of two large prime numbers, the "factoring problem". The acronym RSA is the initial letters of the surnames of Ron Rivest, Adi Shamir, and Leonard Adleman, who publicly described the algorithm in 1977. Clifford Cocks, an English mathematician working for the British intelligence agency Government Communications Headquarters (GCHQ), had developed an equivalent system in 1973, which was not declassified until 1997.

The Digital Signature Algorithm (DSA) is a Federal Information Processing Standard for digital signatures, based on the mathematical concept of modular exponentiation and the discrete logarithm problem. DSA is a variant of the Schnorr and ElGamal signature schemes.

The Merkle–Hellman knapsack cryptosystem was one of the earliest public key cryptosystems invented by Ralph Merkle and Martin Hellman in 1978. The algorithm can be implemented faster than RSA, yet it was found insecure in 1982 by Adi Shamir.

The Rabin cryptosystem is an asymmetric cryptographic technique, whose security, like that of RSA, is related to the difficulty of integer factorization. However the Rabin cryptosystem has the advantage that it has been mathematically proven to be computationally secure against a chosen-plaintext attack as long as the attacker cannot efficiently factor integers, while there is no such proof known for RSA. It has the disadvantage that each output of the Rabin function can be generated by any of four possible inputs; if each output is a ciphertext, extra complexity is required on decryption to identify which of the four possible inputs was the true plaintext.

In mathematics, a low-discrepancy sequence is a sequence with the property that for all values of N, its subsequence x1, ..., xN has a low discrepancy.

The Paillier cryptosystem, invented by and named after Pascal Paillier in 1999, is a probabilistic asymmetric algorithm for public key cryptography. The problem of computing n-th residue classes is believed to be computationally difficult. The decisional composite residuosity assumption is the intractability hypothesis upon which this cryptosystem is based.

The NTRUEncrypt public key cryptosystem, also known as the NTRU encryption algorithm, is a lattice-based alternative to RSA and ECC and is based on the shortest vector problem in a lattice.

The ElGamal signature scheme is a digital signature scheme which is based on the difficulty of computing discrete logarithms. It was described by Taher Elgamal in 1985.

The Goldwasser–Micali (GM) cryptosystem is an asymmetric key encryption algorithm developed by Shafi Goldwasser and Silvio Micali in 1982. GM has the distinction of being the first probabilistic public-key encryption scheme which is provably secure under standard cryptographic assumptions. However, it is not an efficient cryptosystem, as ciphertexts may be several hundred times larger than the initial plaintext. To prove the security properties of the cryptosystem, Goldwasser and Micali proposed the widely used definition of semantic security.

In mathematics and computing, universal hashing refers to selecting a hash function at random from a family of hash functions with a certain mathematical property. This guarantees a low number of collisions in expectation, even if the data is chosen by an adversary. Many universal families are known, and their evaluation is often very efficient. Universal hashing has numerous uses in computer science, for example in implementations of hash tables, randomized algorithms, and cryptography.

Homomorphic encryption

Homomorphic encryption is a form of encryption that allows computation on ciphertexts, generating an encrypted result which, when decrypted, matches the result of the operations as if they had been performed on the plaintext.

In cryptography the Rabin signature algorithm is a method of digital signature originally proposed by Michael O. Rabin in 1979. The Rabin signature algorithm was one of the first digital signature schemes proposed, and it is the only one to relate the hardness of forgery directly to the problem of integer factorization. The Rabin signature algorithm is existentially unforgeable in the random oracle model assuming the integer factorization problem is intractable. The Rabin signature algorithm is also closely related to the Rabin cryptosystem.

The Naccache–Stern Knapsack Cryptosystem is an atypical public-key cryptosystem developed by David Naccache and Jacques Stern in 1997. This cryptosystem is deterministic, and hence is not semantically secure. While unbroken to date, this system also lacks provable security.

The Okamoto–Uchiyama cryptosystem is a public key cryptosystem proposed in 1998 by Tatsuaki Okamoto and Shigenori Uchiyama. The system works in the multiplicative group of integers modulo n, , where n is of the form p2q and p and q are large primes.

Learning with errors (LWE) is the computational problem of inferring a linear -ary function over a finite ring from given samples some of which may be erroneous. The LWE problem is conjectured to be hard to solve, and thus be useful in cryptography.

In discrete mathematics, ideal lattices are a special class of lattices and a generalization of cyclic lattices. Ideal lattices naturally occur in many parts of number theory, but also in other areas. In particular, they have a significant place in cryptography. Micciancio defined a generalization of cyclic lattices as ideal lattices. They can be used in cryptosystems to decrease by a square root the number of parameters necessary to describe a lattice, making them more efficient. Ideal lattices are a new concept, but similar lattice classes have been used for a long time. For example cyclic lattices, a special case of ideal lattices, are used in NTRUEncrypt and NTRUSign.

Badger is a Message Authentication Code (MAC) based on the idea of universal hashing and was developed by Boesgaard, Scavenius, Pedersen, Christensen, and Zenner. It is constructed by strengthening the ∆-universal hash family MMH using an ϵ-almost strongly universal (ASU) hash function family after the application of ENH, where the value of ϵ is . Since Badger is a MAC function based on the universal hash function approach, the conditions needed for the security of Badger are the same as those for other universal hash functions such as UMAC.

Coppersmith's attack describes a class of cryptographic attacks on the public-key cryptosystem RSA based on the Coppersmith method. Particular applications of the Coppersmith method for attacking RSA include cases when the public exponent e is small or when partial knowledge of the secret key is available.

Non-commutative cryptography is the area of cryptology where the cryptographic primitives, methods and systems are based on algebraic structures like semigroups, groups and rings which are non-commutative. One of the earliest applications of a non-commutative algebraic structure for cryptographic purposes was the use of braid groups to develop cryptographic protocols. Later several other non-commutative structures like Thompson groups, polycyclic groups, Grigorchuk groups, and matrix groups have been identified as potential candidates for cryptographic applications. In contrast to non-commutative cryptography, the currently widely used public-key cryptosystems like RSA cryptosystem, Diffie–Hellman key exchange and elliptic curve cryptography are based on number theory and hence depend on commutative algebraic structures.

In cryptography, a public key exchange algorithm is a cryptographic algorithm which allows two parties to create and share a secret key, which they can use to encrypt messages between themselves. The ring learning with errors key exchange (RLWE-KEX) is one of a new class of public key exchange algorithms that are designed to be secure against an adversary that possesses a quantum computer. This is important because some public key algorithms in use today will be easily broken by a quantum computer if and when such computers are implemented. RLWE-KEX is one of a set of post-quantum cryptographic algorithms which are based on the difficulty of solving certain mathematical problems involving lattices. Unlike older lattice based cryptographic algorithms, the RLWE-KEX is provably reducible to a known hard problem in lattices.

References

  1. Bram Cohen. "Simple Public Key Encryption". Archived from the original on October 7, 2011.