Colorplexer

Last updated

Color television as introduced in North America in 1954 is best described as being 'colored' television. The system used the existing black and white signal but with the addition of a component intended only for television receivers designed to show color. By careful application this 'colored' signal was ignored by ordinary TV sets and had negligible effect on the appearance of the black and white image. This meant that color programs were viewable on the many existing black and white receivers which fulfilled a requirement for 'compatibility' desired by the television industry. Once the so-called 'composite' video signal containing the color component had been generated it could be handled just as if it were a black and white signal, eliminating the need to replace much of the existing TV infrastructure. Colorplexer was the RCA name for the equipment that created this 'composite' color signal from three separate images each created in the primary colors, Red, Green and Blue supplied by a color video camera. This process was by the standards of the day quite complex and demanded accurate control of all the various parameters involved if an acceptable color image was to be achieved. The simplification afforded by this 'head end' approach became evident and contributed to the gradual acceptance of color programming over the following decades.

Contents

National standard

The National Television System Committee, NTSC, standard was the analog television system that was used in most of the North America from 1941 until the mandatory cutover to ATSC in 2009. However, low-power TV stations were permitted to operate with NTSC, for now, but many have since converted to ATSC. This national standard was later adopted (or, in some cases, adapted) in other jurisdictions, such as Japan.

The Second NTSC Standard (525/30, 1941 and later) anticipated that the extant monochrome TV system would eventually incorporate a provision for monochrome-compatible color television. The First NTSC Standard (441/30, pre-1941) had no such expectation, as even the extant motion picture 3-color system, "Three-Strip" Technicolor, was then only five years old. The Second NTSC Standard, as revised for color, sometimes called EIA RS-170a, was operational in North America and elsewhere from 1953 until this standard was replaced by ATSC in the early 21st century.

Central to this revised standard was a mandate for an information stream, at the transmitter, and broadcast to TV sets (receivers), which was independent of whether the signal was monochrome (already in existence since 1941) or color (adopted in 1953).

This significant mandate was satisfied by an encoding device which came to be known as a Colorplexer.

Signal management

Colorplexer (a portmanteau of "color" and "multiplexer") was the RCA trade name for its complex electronic device which encoded discrete red, green and blue 3-color images, as from a color camera, into a composite monochrome-compatible color information stream.

In RCA's recommendation for monochrome-compatible color TV, generally called "NTSC color", each color TV source (as, from a CCU) incorporated its own colorplexer, thereby providing the remaining equipment, all of which were presumed to have originated as a monochrome equipment system, with a signal which could be managed (generated, switched, transmitted, received, etcetera) as if the signal was not color at all, but was an ordinary composite monochrome signal.

This was a strategic decision on RCA's part, and this "one Colorplexer per color source" concept became part of RCA's color TV equipment marketing recommendations. While it made each color source significantly more complicated, hence more expensive, it also obviated the need for major changes to a TV station's signal management system, and the cost of signal management (particularly for networks involving widely separated sources and destinations, such as RCA's wholly owned NBC-TV network) was seen as considerably higher in cost than the color signal sources themselves, as otherwise it would have to be changed from a (composite) Y-only management system into a (component) R-, G- and B-management system (thereby effectively tripling the cost of color signal distribution).

Using today's three-phase electrical system in an analogy, overlaying an R-, G- and B-color TV signal management system upon an existing monochrome TV signal management system would be analogous to requiring public utility power systems to convert from three-phase to nine-phase electricity, an insurmountable cost penalty.

The Second NTSC Standard did not specifically mandate RCA's "one Colorplexer per color source" recommendation, as long as the signal actually transmitted to the signal's end user was monochrome-compatible, and this could have been satisfied by an R, G and B signal management system, and a single Colorplexer at the transmitter, and this would have been adequate for small-market TV stations, particularly those with video sources which were co-located at the station's transmitter site. However, the obvious high cost of R-, G- and B-signal management within a large-market TV station, with separate studio and transmitter sites (sources and destinations separated by perhaps one to tens of miles), or particularly within a TV network, with geographically widely separated sources and destinations (sources and destinations separated by perhaps hundreds to thousands of miles), resulted in adoption of RCA's "one Colorplexer per color source" recommendation almost universally, and particularly after Ampex's introduction of color videotape in 1958 (which was never a component system at all, but was always inherently a composite system), and Ampex's (and, later, RCA's) color videotape systems became essential subsystems of multi-time-zone (national, or, indeed, international) network color TV distribution and transmission.

Initially, the instability of the early Colorplexers caused many operational problems as no two Colorplexers were adjusted alike, and these had to be constantly "tweaked", as did the video sources themselves. Eventually, Colorplexer stability improved, as did the stability of the video sources, and NTSC color would go on to provide consistently good color, and it did so until 2009, nearly 56 years, a remarkable technological achievement, as, compared with "Three-Strip" Technicolor, perhaps the "exemplar" for color motion pictures, which lasted only 19 years (from 1936 to 1955).

Encoder

The R, G and B primary color signals are passed through a "matrix" to derive the luminance signal, Y, which is the monochrome equivalent of the three primary colors.

With the addition of inputs from the synchronizing generator, which supplies the blanking and composite synch signals, and inputs from the color burst generator, which supplies the 3.579545 MHz color burst and the "burst gate" signals, the colorplexer, using an "encoder", synthesizes a compatible signal which includes luminance (described earlier) and chrominance (an amplitude-modulated suppressed-carrier signal with "I" and "Q" in quadrature, and which represents the differences between the color signals and the monochrome signal), the combination of which produces a monochrome-compatible color information stream.

The "burst gate" admits eight cycles of the 3.579545 MHz "color burst" and applies this to the "back porch" of each horizontal synch pulse (the vertical synch is unaffected). These eight cycles are just enough to supply a color TV receiver with a reference with which it can correct its own 3.579545 MHz local oscillator as to frequency and phase, phase being the most significant aspect of the process of recovering the "I" and "Q" signals.

The "matrix" adopted by RCA was Y = 0.30R + 0.59G + 0.11B; the three weighting factors were selected such that their sum was 1.0.

As with "prior art" two-color systems, such as pre-1932 Technicolor, the G signal predominates the R signal; and, as with "prior art" three-color systems, such as 1932 and later "Three-Strip" Technicolor, the G and R signals predominate the B signal.

RCA's color system was developed while "Three-Strip" Technicolor was the "gold standard", and Eastman Kodak's Eastmancolor would not completely displace "Three-Strip" Technicolor for another half-decade. Indeed, RCA's P22 CRT phosphor was intended to mimic Technicolor's dramatic color palette.

In most practical color systems, including RCA's, the G signal is taken to be the reference as it has the highest resolution. Indeed, in 1932 to 1944 "Three-Strip" Technicolor, the image was enhanced by printing a monochrome image which was taken from a 0.5G negative (called the "key" image, and hence that color system was really an RGBK system, not unlike graphic arts' YCMK system) on the film's "blank receiver" before the color dyes were applied, as an edge enhancement measure.

Edge enhancement is now a part of many electronically based color systems, but in "Three-Strip" Technicolor's day, it was accomplished photographically from the G image, the sharpest of the three.

Monochrome compatibility

Conventional monochrome TV sets will accept this signal as if there were no chrominance or burst signals at all. A monochrome image, Y, with minimal or no defects (such as moiré, etcetera) will be displayed.

The "I", "Q" and "color burst" signals will be ignored, leaving only the monochrome image.

Color Compatibility

Color TV sets will accept this signal and will, first, separate the monochrome image, Y, and will, second, decode the "I" and "Q" signals, using the extracted "color burst" 3.579545 MHz signal as a phase reference to decode these signals.

Applying the monochrome image and the decoded "I" and "Q" signals to the mathematical inverse of the "matrix" reverse synthesizes the R, G and B primary color signals, which were applied to a "shadow mask" or equivalent TV tube, and which displays a 3-color color image.

Related Research Articles

Analog television Television that uses analog signals

Analog television is the original television technology that uses analog signals to transmit video and audio. In an analog television broadcast, the brightness, colors and sound are represented by amplitude, phase and frequency of an analog signal.

Chrominance

Chrominance is the signal used in video systems to convey the color information of the picture, separately from the accompanying luma signal. Chrominance is usually represented as two color-difference components: U = B′ − Y′ (blue − luma) and V = R′ − Y′ (red − luma). Each of these difference components may have scale factors and offsets applied to it, as specified by the applicable video standard.

NTSC Analog color television system developed in the United States

The National Television System Committee (NTSC) developed the analog television color system that was introduced in North America in 1954 and stayed in use until digital conversion. It is one of three major analog color television standards, the others being PAL and SECAM. All the countries using NTSC are currently in the process of conversion, or have already converted to the ATSC standard, or to DVB, ISDB or DTMB.

PAL Colour encoding system for analogue television

Phase Alternating Line (PAL) is a colour encoding system for Analog television used in broadcast television systems. It was one of three major analogue colour television standards, the others being NTSC and SECAM. In most countries it was broadcast at 625-line / 50 field per second (576i).

SECAM French analog color television system

SECAM, also written SÉCAM, is an analog color television system first used in France. It was one of three major analog color television standards, the others being PAL and NTSC.

Composite video Analog video signal format

Composite video is an analog video signal format that carries standard-definition video as a single channel. Video information is encoded on one channel, unlike the higher-quality S-video and the even higher-quality component video. In all of these video formats, audio is carried on a separate connection.

Color television Television transmission technology

Color television is a television transmission technology that includes information on the color of the picture, so the video image can be displayed in color on the television set. It is considered an improvement on the earliest television technology, monochrome or black-and-white television, in which the image is displayed in shades of gray (grayscale). Television broadcasting stations and networks in most parts of the world upgraded from black-and-white to color transmission between the 1960s and the 1980s. The invention of color television standards is an important part of the history of television, and it is described in the technology of television article.

SMPTE timecode is a set of cooperating standards to label individual frames of video or film with a timecode. The system is defined by the Society of Motion Picture and Television Engineers in the SMPTE 12M specification. SMPTE revised the standard in 2008, turning it into a two-part document: SMPTE 12M-1 and SMPTE 12M-2, including new explanations and clarifications.

Terrestrial television Television content transmitted via signals in the air

Terrestrial television is a type of television broadcasting in which the television signal is transmitted by radio waves from the terrestrial (Earth-based) transmitter of a television station to a TV receiver having an antenna. The term terrestrial is more common in Europe and Latin America, while in Canada and the United States it is called broadcast or over-the-air television (OTA). The term "terrestrial" is used to distinguish this type from the newer technologies of satellite television, in which the television signal is transmitted to the receiver from an overhead satellite; cable television, in which the signal is carried to the receiver through a cable; and Internet Protocol television, in which the signal is received over an Internet stream or on a network utilizing the Internet Protocol. Terrestrial television stations broadcast on television channels with frequencies between about 52 and 600 MHz in the VHF and UHF bands. Since radio waves in these bands travel by line of sight, reception is generally limited by the visual horizon to distances of 64–97 kilometres (40–60 mi), although under better conditions and with tropospheric ducting, signals can sometimes be received hundreds of kilometers distant.

Broadcast television systems are the encoding or formatting standards for the transmission and reception of terrestrial television signals. There were three main analog television systems in use around the world until the late 2010s: NTSC, PAL, and SECAM. Now in digital terrestrial television (DTT), there are four main systems in use around the world: ATSC, DVB, ISDB and DTMB.

YPbPr

YPbPr or Y'PbPr, also written as YPBPR, is a color space used in video electronics, in particular in reference to component video cables. YPbPr is gamma corrected YCbCr color space ; the two are numerically equivalent but YPbPr is designed for use in analog systems while YCbCr is intended for digital video. The EOTF may be different from common sRGB EOTF and BT.1886 EOTF. Sync is carried on the Y channel and is a bi-level sync signal, however, in HD formats a tri-level sync is used and is typically carried on all channels.

Vectorscope

A vectorscope is a special type of oscilloscope used in both audio and video applications. Whereas an oscilloscope or waveform monitor normally displays a plot of signal vs. time, a vectorscope displays an X-Y plot of two signals, which can reveal details about the relationship between these two signals. Vectorscopes are highly similar in operation to oscilloscopes operated in X-Y mode; however those used in video applications have specialized graticules, and accept standard television or video signals as input.

Dot crawl

Dot crawl is a visual defect of color analog video standards when signals are transmitted as composite video, as in terrestrial broadcast television. It consists of moving checkerboard patterns which appear along horizontal color transitions. It results from intermodulation or crosstalk between chrominance and luminance components of the signal, which are imperfectly multiplexed in the frequency domain.

MUSE was an analog high-definition television system, using dot-interlacing and digital video compression to deliver 1125-line (1920x1035) high definition video signals to the home. Japan had the earliest working HDTV system, MUSE, which was named Hi-Vision with design efforts going back to 1979. The country began broadcasting wideband analog HDTV signals in 1989 using 1035 active lines interlaced in the standard 2:1 ratio (1035i) with 1125 lines total. By the time of its commercial launch in 1991, digital HDTV was already under development in the United States. Hi-Vision continued broadcasting in analog until 2007.

A field-sequential color system (FSC) is a color television system in which the primary color information is transmitted in successive images and which relies on the human vision system to fuse the successive images into a color picture. One field-sequential system was developed by Dr. Peter Goldmark for CBS, which was its sole user in commercial broadcasting. It was first demonstrated to the press on September 4, 1940, and first shown to the general public on January 12, 1950. The Federal Communications Commission adopted it on October 11, 1950, as the standard for color television in the United States, but it was later withdrawn.

High-definition television describes a television system providing a substantially higher image resolution than the previous generation of technologies. The term has been used since 1936, but in modern times refers to the generation following standard-definition television (SDTV), often abbreviated to HDTV or HD-TV. It is the current de facto standard video format used in most broadcasts: terrestrial broadcast television, cable television, satellite television and Blu-ray Discs.

Differential gain is a kind of linearity distortion which affects the color saturation in TV broadcasting.

Differential phase is a kind of linearity distortion which affects the color hue in TV broadcasting.

The color killer is an electronic stage in color TV receiver sets which acts as a cutting circuit to cut off color processing when the TV receives a monochrome signal.

Composite artifact colors

Composite artifact colors is a designation commonly used to address several graphic modes of some 1970s and 1980s home computers. With some machines, when connected to an NTSC TV or monitor over composite video outputs, the video signal encoding allowed for extra colors to be displayed, by manipulating the pixel position on screen, not being limited by each machine's hardware color palette.

References

http://www.americanradiohistory.com/Archive-RCA-Broadcast-News/RCA-77.pdf [ dead link ]