Comet Lemmon (disambiguation)

Last updated

Comet Lemmon may refer to any comets below discovered by the Mount Lemmon Survey:

Contents

Periodic Comets

Encke-type Comets

Jupiter-family Comets

Halley-type Comets

Non-Periodic Comets

C/2012 F6 C2012F6Lemmon.jpg
C/2012 F6
C/2019 U6 Cometa Lemmon - C2019U6 - Esteban J. Andrada - Argentina.jpg
C/2019 U6
C/2021 T4 C2021 T4 2022-12-21 image ZTF-sso-295-zg-fov-5.6arcmin.png
C/2021 T4
C/2023 H2 C2023H2 B13 GraXpert.jpg
C/2023 H2

Hyperbolic Comets

Others

"Comet Lemmon" may also be an incomplete reference to a comet co-discovered by the Mount Lemmon Survey. These include:


Related Research Articles

Andrea Boattini is an Italian astronomer and a prolific discoverer of minor planets and comets.

Robert H. McNaught is a Scottish-Australian astronomer at the Research School of Astronomy and Astrophysics of the Australian National University (ANU). He has collaborated with David J. Asher of the Armagh Observatory.

<span class="mw-page-title-main">Pan-STARRS</span> Multi-telescope astronomical survey

The Panoramic Survey Telescope and Rapid Response System located at Haleakala Observatory, Hawaii, US, consists of astronomical cameras, telescopes and a computing facility that is surveying the sky for moving or variable objects on a continual basis, and also producing accurate astrometry and photometry of already-detected objects. In January 2019 the second Pan-STARRS data release was announced. At 1.6 petabytes, it is the largest volume of astronomical data ever released.

<span class="mw-page-title-main">Active asteroid</span> Bodies orbiting within the main asteroid belt which have shown cometary activity

Active asteroids are small Solar System bodies that have asteroid-like orbits but show comet-like visual characteristics. That is, they show a coma, tail, or other visual evidence of mass-loss, but their orbits remain within Jupiter's orbit. These bodies were originally designated main-belt comets (MBCs) in 2006 by astronomers David Jewitt and Henry Hsieh, but this name implies they are necessarily icy in composition like a comet and that they only exist within the main-belt, whereas the growing population of active asteroids shows that this is not always the case.

<span class="mw-page-title-main">Anti-tail</span> Feature of a comet

An antitail is an apparent spike projecting from a comet's coma which seems to go towards the Sun, and thus geometrically opposite to the other tails: the ion tail and the dust tail. Despite a common misunderstanding, this phenomenon is not an optical illusion. The antitail consists of larger dust particles left behind by the comet. These dust particles are less affected by the Sun's radiation pressure and tend to remain roughly in the comet's orbital plane and eventually form a disc along the comet's orbit due to the ejection speed of the particles from the comet's surface. As Earth passes through the comet's orbital plane, this disc is seen side on, and appears as the characteristic spike. The other side of the disc can sometimes be seen, though it tends to be lost in the dust tail. The antitail is therefore normally visible for a brief interval only when Earth passes through the comet's orbital plane.

<span class="mw-page-title-main">C/2011 L4 (PanSTARRS)</span> Non-periodic comet

C/2011 L4 (PanSTARRS), also known as Comet PANSTARRS, is a non-periodic comet discovered in June 2011 that became visible to the naked eye when it was near perihelion in March 2013. It was discovered using the Pan-STARRS telescope located near the summit of Haleakalā, on the island of Maui in Hawaii. Comet C/2011 L4 probably took millions of years to come from the Oort cloud. After leaving the planetary region of the Solar System, the post-perihelion orbital period is estimated to be roughly 107000 years. Dust and gas production suggests the comet nucleus is roughly 1 kilometer (0.62 mi) in diameter, while based on the absolute nuclear magnitude and a geometric albedo of 0.04 the diameter of the nucleus is over 2.4 kilometers (1.5 mi). A method based on coma magnitude decay function estimated the effective radius at 2.317 ± 0.190 km.

The Edgar Wilson Award is an annual international award established in 1998 consisting of a monetary award and a plaque allocated annually to amateur comet discoverers. It is administered by the Smithsonian Astrophysical Observatory (SAO) through the IAU's Central Bureau for Astronomical Telegrams (CBAT).

<span class="mw-page-title-main">460P/PanSTARRS</span> Near-Earth object and periodic comet of the Jupiter family

460P/PanSTARRS (also known with the provisional designation P/2016 BA14) is a near-Earth object and periodic comet of the Jupiter family, with an orbital period of 5.25 years. In March 2016 it passed at distance of 2.2 million miles (3.5 million km, or 9 lunar distances) from Earth. It was the closest approach by a comet since 1770 and 3rd closest recorded comet to Earth. The close flyby enabled the size of the nucleus to be calculated at about 1 km (0.62 mi) in diameter, which was much bigger than expected. The comet is very dark, reflecting about 2-3 percent of the visible light, about the same as a charcoal briquette. It has a very similar orbit as numbered comet 252P/LINEAR, and may be related to it (e.g. split off of).

A hyperbolic asteroid is any sort of asteroid or non-cometary astronomical object observed to have an orbit not bound to the Sun and will have an orbital eccentricity greater than 1 when near perihelion. Unlike hyperbolic comets, they have not been seen out-gassing light elements, and therefore have no cometary coma. Most of these objects will only be weakly hyperbolic and will not be of interstellar origin.

<span class="mw-page-title-main">C/2017 U7 (PanSTARRS)</span> Hyperbolic comet

C/2017 U7 (PanSTARRS) is a hyperbolic comet, first observed on 29 October 2017 by astronomers of the Pan-STARRS facility at Haleakala Observatory, Hawaii, United States when the object was 7.8 AU (1.2 billion km) from the Sun. Despite being discovered only 10 days after interstellar asteroid 1I/'Oumuamua, it was not announced until March 2018 as its orbit is not strongly hyperbolic beyond most Oort Cloud comets. Based on the absolute magnitude of 10.6, it may measure tens of kilometers in diameter. As of August 2018, there is only 1 hyperbolic asteroid known, ʻOumuamua, but hundreds of hyperbolic comets are known.

Tianwen-2 is a planned Chinese asteroid sample return and comet exploration mission that is currently under development. Tianwen-2 was originally known as ZhengHe.

<span class="mw-page-title-main">P/2013 R3 (Catalina–PanSTARRS)</span>

P/2013 R3 (Catalina–PanSTARRS) was an active main-belt asteroid that disintegrated from 2013 to 2014 due to the centrifugal breakup of its rapidly-rotating nucleus. It was discovered by astronomers of the Catalina and Pan-STARRS sky surveys on 15 September 2013. The disintegration of this asteroid ejected numerous fragments and dusty debris into space, which temporarily gave it a diffuse, comet-like appearance with a dust tail blown back by solar radiation pressure. Observations by ground-based telescopes in October 2013 revealed that P/2013 R3 had broken up into four major components, with later Hubble Space Telescope observations showing that these components have further broken up into at least thirteen smaller fragments ranging 100–400 meters (330–1,310 ft) in diameter. P/2013 R3 was never seen again after February 2014.

<span class="mw-page-title-main">483P/PanSTARRS</span> Pair of active asteroids

483P/PanSTARRS is a pair of active main-belt asteroids that split apart from each other in early 2010. The brightest and largest component of the pair, P/2016 J1-A, was discovered first by the Pan-STARRS 1 survey at Haleakalā Observatory on 5 May 2016. Follow-up observations by the Canada-France-Hawaii Telescope at Mauna Kea Observatory discovered the second component, P/2016 J1-B, on 6 May 2016. Both asteroids are smaller than 1 kilometre (0.62 mi) in diameter, with P/2016 J1-A being roughly 0.6 km (0.37 mi) in diameter and P/2016 J1-B being roughly 0.3 km (0.19 mi) in diameter. The two components recurrently exhibit cometary activity as they approach the Sun near perihelion, suggesting that their activity is driven by sublimation of volatile compounds such as water.

Comet ATLAS may refer to any comets below discovered by the Asteroid Terrestrial-impact Last Alert System survey:

Comet WISE and Comet NEOWISE may refer to any comets below discovered by the Wide-field Infrared Survey Explorer satellite between 2009 and 2024: