Contra-rotating

Last updated
A Soviet Ka-32 helicopter with coaxial contra-rotating rotors, in 1989 Ka-32-SovietUnion-1989.jpg
A Soviet Ka-32 helicopter with coaxial contra-rotating rotors, in 1989

Contra-rotating, also referred to as coaxial contra-rotating, is a technique whereby parts of a mechanism rotate in opposite directions about a common axis, usually to minimise the effect of torque. Examples include some aircraft propellers, resulting in the maximum power of a single piston or turboprop engine to drive two propellers in opposite rotation. Contra-rotating propellers are also common in some marine transmission systems, in particular for large speed boats with planing hulls. Two propellers are arranged one behind the other, and power is transferred from the engine via planetary gear transmission. The configuration can also be used in helicopter designs termed coaxial rotors, where similar issues and principles of torque apply.

Contents

Contra-rotating propellers should not be confused with counter-rotating propellers, a term which describes non-coaxial propellers on separate shafts; one turning clockwise and the other counter-clockwise. Tandem-rotor helicopters such as the CH-47 Chinook also use a counter-rotating arrangement.

The efficiency of a contra-rotating propeller is somewhat offset by its mechanical complexity. Nonetheless, coaxial contra-rotating propellers and rotors are moderately common in military aircraft and naval applications, such as torpedoes, where the added maintenance cost is not a primary concern.

Aircraft propulsion and lift

While several nations experimented with contra-rotating propellers in aircraft, only the United Kingdom and Soviet Union produced them in large numbers. The U.S. worked with several prototypes, including the tail-sitting Convair XFY and Lockheed XFV "Pogo" VTOL fighters, but jet engine technology was advancing rapidly and the designs were deemed unnecessary.

Some helicopters use contra-rotating coaxial rotors mounted one above the other. The H-43 Huskie helicopter uses non-coaxial intermeshing rotors turning in opposite directions.

The F-35B variant of the F-35 Lightning II strike fighter uses a lift fan with contra-rotating blades.

Marine propulsion

A Mark 46 Mod 5A torpedo is inspected aboard a destroyer in April 2005 Mark-46-prop.jpg
A Mark 46 Mod 5A torpedo is inspected aboard a destroyer in April 2005

Contra-rotating propellers have benefits when providing thrust for boats for the same reasons. ABB provided an azimuth thruster for ShinNihonkai Ferries in form of the CRP Azipod, [1] claiming efficiency gains from the propeller (about 10% increase [2] ) and a simpler hull design. Volvo Penta have launched the IPS (Inboard Performance System), [3] an integrated diesel, transmission and pulling contra-rotating propellers for motor yachts.

Torpedoes have commonly used contra-rotating propellers to give the maximum possible speed within a limited diameter as well as counteracting the torque that would otherwise tend to cause the torpedo to rotate around its own longitudinal axis.

Advantages

Disadvantages

Contra-rotating propellers are used on torpedoes due to the natural torque compensation and are also used in some motor boats. The cost of boring out the outer shafts and problems of mounting the inner shaft bearings are not worth pursuing in case of normal ships.

See also

Related Research Articles

Azimuth thruster Steerable propulsion pod under a watercraft

An azimuth thruster is a configuration of marine propellers placed in pods that can be rotated to any horizontal angle (azimuth), making a rudder unnecessary. These give ships better maneuverability than a fixed propeller and rudder system.

Contra-rotating propellers

Aircraft equipped with contra-rotating propellers, also referred to as CRP, coaxial contra-rotating propellers, or high-speed propellers, apply the maximum power of usually a single piston or turboprop engine to drive two coaxial propellers in contra-rotation. Two propellers are arranged one behind the other, and power is transferred from the engine via a planetary gear or spur gear transmission. Contra-rotating propellers are also known as counter-rotating propellers, although counter-rotating propellers is much more widely used when referring to airscrews on separate non-coaxial shafts turning in opposite directions.

NOTAR

NOTAR is a helicopter system which avoids the use of a tail rotor. It was developed by McDonnell Douglas Helicopter Systems. The system uses a fan inside the tail boom to build a high volume of low-pressure air, which exits through two slots and creates a boundary layer flow of air along the tailboom utilizing the Coandă effect. The boundary layer changes the direction of airflow around the tailboom, creating thrust opposite the motion imparted to the fuselage by the torque effect of the main rotor. Directional yaw control is gained through a vented, rotating drum at the end of the tailboom, called the direct jet thruster. Advocates of NOTAR believe the system offers quieter and safer operation over a traditional tail rotor.

Tandem rotors

Tandem rotor helicopters have two large horizontal rotor assemblies mounted one in front of the other. Currently this configuration is mainly used for large cargo helicopters.

Helicopter flight controls

A helicopter pilot manipulates the helicopter flight controls to achieve and maintain controlled aerodynamic flight. Changes to the aircraft flight control system transmit mechanically to the rotor, producing aerodynamic effects on the rotor blades that make the helicopter move in a deliberate way. To tilt forward and back (pitch) or sideways (roll) requires that the controls alter the angle of attack of the main rotor blades cyclically during rotation, creating differing amounts of lift (force) at different points in the cycle. To increase or decrease overall lift requires that the controls alter the angle of attack for all blades collectively by equal amounts at the same time, resulting in ascent, descent, acceleration and deceleration.

Tail rotor

The tail rotor is a smaller rotor mounted vertically or near-vertically at the tail of a traditional single-rotor helicopter, where it rotates to generate a horizontal thrust in the same direction as the main rotor's rotation. The tail rotor's position and distance from the helicopter's center of mass allow it to develop enough thrust leverage to counter the reactional torque exerted on the fuselage by the spinning of the main rotor. Without the tail rotor or other anti-torque mechansims, the helicopter would be constantly spinning in the opposite direction of the main rotor when flying.

Coaxial rotors

Coaxial rotors or coax rotors are a pair of helicopter rotors mounted one above the other on concentric shafts, with the same axis of rotation, but turning in opposite directions (contra-rotating). This rotor configuration is a feature of helicopters produced by the Russian Kamov helicopter design bureau.

Helicopter rotor

A helicopter main rotor or rotor system is the combination of several rotary wings and a control system that generates the aerodynamic lift force that supports the weight of the helicopter, and the thrust that counteracts aerodynamic drag in forward flight. Each main rotor is mounted on a vertical mast over the top of the helicopter, as opposed to a helicopter tail rotor, which connects through a combination of drive shaft(s) and gearboxes along the tail boom. The blade pitch is typically controlled by a swashplate connected to the helicopter flight controls. Helicopters are one example of rotary-wing aircraft (rotorcraft). The name is derived from the Greek words helix, helik-, meaning spiral; and pteron meaning wing.

Quadcopter

A quadcopter or quadrotor is a type of helicopter with four rotors.

Rotorcraft Heavier-than-air aircraft which generates lift over rotating wings

A rotorcraft or rotary-wing aircraft is a heavier-than-air aircraft with rotary wings or rotor blades, which generate lift by rotating around a vertical mast. Several rotor blades mounted on a single mast are referred to as a rotor. The International Civil Aviation Organization (ICAO) defines a rotorcraft as "supported in flight by the reactions of the air on one or more rotors".

P-factor

P-factor, also known as asymmetric blade effect and asymmetric disc effect, is an aerodynamic phenomenon experienced by a moving propeller, where the propeller's center of thrust moves off-center when the aircraft is at a high angle of attack. This shift in the location of the center of thrust will exert a yawing moment on the aircraft, causing it to yaw slightly to one side. A rudder input is required to counteract the yawing tendency.

Propeller (aeronautics)

In aeronautics, a propeller, also called an airscrew, converts rotary motion from an engine or other power source into a swirling slipstream which pushes the propeller forwards or backwards. It comprises a rotating power-driven hub, to which are attached several radial airfoil-section blades such that the whole assembly rotates about a longitudinal axis. The blade pitch may be fixed, manually variable to a few set positions, or of the automatically variable "constant-speed" type.

Counter-rotating propellers Propellers that rotate on opposite directions

Counter-rotating propellers, also referred to as CRP, are propellers which spin in opposite directions to each other. They are used on some twin- and multi-engine propeller-driven aircraft.

Helicopter Type of rotor craft in which lift and thrust are supplied by rotors

A helicopter is a type of rotorcraft in which lift and thrust are supplied by horizontally-spinning rotors. This allows the helicopter to take off and land vertically, to hover, and to fly forward, backward and laterally. These attributes allow helicopters to be used in congested or isolated areas where fixed-wing aircraft and many forms of VTOL aircraft cannot perform.

The torque effect experienced in helicopters and single propeller-powered aircraft is an example of Isaac Newton's third law of motion, that "for every action, there is an equal and opposite reaction."

Berliner Helicopter

The Berliner Helicopters was a series of experimental helicopters built by Henry Berliner between 1922 and 1925. The helicopters had only limited controllability but were the most significant step forward in helicopter design in the USA, until the production of the Vought-Sikorsky VS-300 helicopter in 1940. The 1922 flights of the Berliner and the de Bothezat H1 were the first by manned helicopters.

Powered aircraft

A powered aircraft is an aircraft that uses onboard propulsion with mechanical power generated by an aircraft engine of some kind.

Multirotor

A multirotor or multicopter is a rotorcraft with more than two lift-generating rotors. An advantage of multirotor aircraft is the simpler rotor mechanics required for flight control. Unlike single- and double-rotor helicopters which use complex variable pitch rotors whose pitch varies as the blade rotates for flight stability and control, multirotors often use fixed-pitch blades; control of vehicle motion is achieved by varying the relative speed of each rotor to change the thrust and torque produced by each.

Free-turbine turboshaft

A free-turbine turboshaft is a form of turboshaft or turboprop gas turbine engine where the power is extracted from the exhaust stream of a gas turbine by an independent turbine, downstream of the gas turbine and is not connected to the gas turbine. This is opposed to the power being extracted from the power spool via a gear box.

Propeller theory is the science governing the design of efficient propellers. A propeller is the most common propulsor on ships, and on small aircraft.

References

  1. ABB Marine Solutions
  2. The CRP Azipod® Propulsion Concept (PDF), ABB, 2002, archived from the original (PDF) on 2017-12-15
  3. home : Volvo Penta