In mathematical finance, convexity refers to non-linearities in a financial model. In other words, if the price of an underlying variable changes, the price of an output does not change linearly, but depends on the second derivative (or, loosely speaking, higher-order terms) of the modeling function. Geometrically, the model is no longer flat but curved, and the degree of curvature is called the convexity.
Strictly speaking, convexity refers to the second derivative of output price with respect to an input price. In derivative pricing, this is referred to as Gamma (Γ), one of the Greeks. In practice the most significant of these is bond convexity, the second derivative of bond price with respect to interest rates.
As the second derivative is the first non-linear term, and thus often the most significant, "convexity" is also used loosely to refer to non-linearities generally, including higher-order terms. Refining a model to account for non-linearities is referred to as a convexity correction.
Formally, the convexity adjustment arises from the Jensen inequality in probability theory: the expected value of a convex function is greater than or equal to the function of the expected value:
Geometrically, if the model price curves up on both sides of the present value (the payoff function is convex up, and is above a tangent line at that point), then if the price of the underlying changes, the price of the output is greater than is modeled using only the first derivative. Conversely, if the model price curves down (the convexity is negative, the payoff function is below the tangent line), the price of the output is lower than is modeled using only the first derivative.[ clarification needed ]
The precise convexity adjustment depends on the model of future price movements of the underlying (the probability distribution) and on the model of the price, though it is linear in the convexity (second derivative of the price function).
The convexity can be used to interpret derivative pricing: mathematically, convexity is optionality – the price of an option (the value of optionality) corresponds to the convexity of the underlying payout.
In Black–Scholes pricing of options, omitting interest rates and the first derivative, the Black–Scholes equation reduces to "(infinitesimally) the time value is the convexity". That is, the value of an option is due to the convexity of the ultimate payout: one has the option to buy an asset or not (in a call; for a put it is an option to sell), and the ultimate payout function (a hockey stick shape) is convex – "optionality" corresponds to convexity in the payout. Thus, if one purchases a call option, the expected value of the option is higher than simply taking the expected future value of the underlying and inputting it into the option payout function: the expected value of a convex function is higher than the function of the expected value (Jensen inequality). The price of the option – the value of the optionality – thus reflects the convexity of the payoff function[ clarification needed ].
This value is isolated via a straddle – purchasing an at-the-money straddle (whose value increases if the price of the underlying increases or decreases) has (initially) no delta: one is simply purchasing convexity (optionality), without taking a position on the underlying asset – one benefits from the degree of movement, not the direction.
From the point of view of risk management, being long convexity (having positive Gamma and hence (ignoring interest rates and Delta) negative Theta) means that one benefits from volatility (positive Gamma), but loses money over time (negative Theta) – one net profits if prices move more than expected, and net loses if prices move less than expected.
From a modeling perspective, convexity adjustments arise every time the underlying financial variables modeled are not a martingale under the pricing measure. Applying Girsanov's theorem [1] allows expressing the dynamics of the modeled financial variables under the pricing measure and therefore estimating this convexity adjustment. Typical examples of convexity adjustments include:
The Black–Scholes or Black–Scholes–Merton model is a mathematical model for the dynamics of a financial market containing derivative investment instruments. From the parabolic partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price given the risk of the security and its expected return. The equation and model are named after economists Fischer Black and Myron Scholes. Robert C. Merton, who first wrote an academic paper on the subject, is sometimes also credited.
In finance, an interest rate swap (IRS) is an interest rate derivative (IRD). It involves exchange of interest rates between two parties. In particular it is a "linear" IRD and one of the most liquid, benchmark products. It has associations with forward rate agreements (FRAs), and with zero coupon swaps (ZCSs).
In finance, a forward rate agreement (FRA) is an interest rate derivative (IRD). In particular it is a linear IRD with strong associations with interest rate swaps (IRSs).
In finance, the style or family of an option is the class into which the option falls, usually defined by the dates on which the option may be exercised. The vast majority of options are either European or American (style) options. These options—as well as others where the payoff is calculated similarly—are referred to as "vanilla options". Options where the payoff is calculated differently are categorized as "exotic options". Exotic options can pose challenging problems in valuation and hedging.
In mathematical finance, the Greeks are the quantities representing the sensitivity of the price of a derivative instrument such as an option to changes in one or more underlying parameters on which the value of an instrument or portfolio of financial instruments is dependent. The name is used because the most common of these sensitivities are denoted by Greek letters. Collectively these have also been called the risk sensitivities, risk measures or hedge parameters.
A swaption is an option granting its owner the right but not the obligation to enter into an underlying swap. Although options can be traded on a variety of swaps, the term "swaption" typically refers to options on interest rate swaps.
In mathematical finance, a risk-neutral measure is a probability measure such that each share price is exactly equal to the discounted expectation of the share price under this measure. This is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset pricing, which implies that in a complete market, a derivative's price is the discounted expected value of the future payoff under the unique risk-neutral measure. Such a measure exists if and only if the market is arbitrage-free.
In finance, a foreign exchange option is a derivative financial instrument that gives the right but not the obligation to exchange money denominated in one currency into another currency at a pre-agreed exchange rate on a specified date. See Foreign exchange derivative.
A quanto is a type of derivative in which the underlying is denominated in one currency, but the instrument itself is settled in another currency at some rate. Such products are attractive for speculators and investors who wish to have exposure to a foreign asset, but without the corresponding exchange rate risk.
In financial economics, asset pricing refers to a formal treatment and development of two interrelated pricing principles, outlined below, together with the resultant models. There have been many models developed for different situations, but correspondingly, these stem from either general equilibrium asset pricing or rational asset pricing, the latter corresponding to risk neutral pricing.
In quantitative finance, a lattice model is a mathematical approach to the valuation of derivatives in situations requiring a discrete time model. For dividend paying equity options, a typical application would correspond to the pricing of an American-style option, where a decision to exercise is allowed at any time up to the maturity. A continuous model, on the other hand, such as the standard Black–Scholes one, would only allow for the valuation of European options, where exercise is limited to the option's maturity date. For interest rate derivatives lattices are additionally useful in that they address many of the issues encountered with continuous models, such as pull to par. The method is also used for valuing certain exotic options, because of path dependence in the payoff. Traditional Monte Carlo methods for option pricing fail to account for optimal decisions to terminate the derivative by early exercise, but some methods now exist for solving this problem.
The following outline is provided as an overview of and topical guide to finance:
In finance, an option is a contract which conveys to its owner, the holder, the right, but not the obligation, to buy or sell a specific quantity of an underlying asset or instrument at a specified strike price on or before a specified date, depending on the style of the option.
In finance, a volatility swap is a forward contract on the future realised volatility of a given underlying asset. Volatility swaps allow investors to trade the volatility of an asset directly, much as they would trade a price index. Its payoff at expiration is equal to
In finance, the Heston model, named after Steven L. Heston, is a mathematical model that describes the evolution of the volatility of an underlying asset. It is a stochastic volatility model: such a model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a random process.
In mathematical finance, the Black–Scholes equation, also called the Black–Scholes–Merton equation, is a partial differential equation (PDE) governing the price evolution of derivatives under the Black–Scholes model. Broadly speaking, the term may refer to a similar PDE that can be derived for a variety of options, or more generally, derivatives.
Option-adjusted spread (OAS) is the yield spread which has to be added to a benchmark yield curve to discount a security's payments to match its market price, using a dynamic pricing model that accounts for embedded options. OAS is hence model-dependent. This concept can be applied to a mortgage-backed security (MBS), or another bond with embedded options, or any other interest rate derivative or option. More loosely, the OAS of a security can be interpreted as its "expected outperformance" versus the benchmarks, if the cash flows and the yield curve behave consistently with the valuation model.
Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling in the financial field.
In finance, a zero coupon swap (ZCS) is an interest rate derivative (IRD). In particular it is a linear IRD, that in its specification is very similar to the much more widely traded interest rate swap (IRS).
{{cite journal}}
: Cite journal requires |journal=
(help)