Corotation electric field

Last updated

In plasma astrophysics, the corotation electric field is the electric field due to the rotation of a magnet. For example, the rotation of the Earth results in a corotation electric field.

Contents

Introduction

Earth's magnetosphere

See also

Related Research Articles

Circular polarization

In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electric field of the wave has a constant magnitude but its direction rotates with time at a steady rate in a plane perpendicular to the direction of the wave.

Polarization (waves) property of waves that can oscillate with more than one orientation

Polarization is a property applying to transverse waves that specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves in solids. In some types of transverse waves, the wave displacement is limited to a single direction, so these also do not exhibit polarization; for example, in surface waves in liquids, the wave displacement of the particles is always in a vertical plane.

Permittivity physical quantity, measure of the resistance to the electric field

In electromagnetism, absolute permittivity, often simply called permittivity, usually denoted by the Greek letter ε (epsilon), is the measure of capacitance that is encountered when forming an electric field in a particular medium. More specifically, permittivity describes the amount of charge needed to generate one unit of electric flux in a particular medium. Accordingly, a charge will yield more electric flux in a medium with low permittivity than in a medium with high permittivity. Permittivity is the measure of a material's ability to store an electric field in the polarization of the medium.

Electric motor electromechanical device

An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and winding currents to generate force in the form of rotation. Electric motors can be powered by direct current (DC) sources, such as from batteries, motor vehicles or rectifiers, or by alternating current (AC) sources, such as a power grid, inverters or electrical generators. An electric generator is mechanically identical to an electric motor, but operates in the reverse direction, accepting mechanical energy and converting this mechanical energy into electrical energy.

Electric generator device that converts other energy to electrical energy

In electricity generation, a generator is a device that converts motive power into electrical power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all of the power for electric power grids.

Right-hand rule mnemonic for the conventional orientation of axes in 3-dimensional space

In mathematics and physics, the right-hand rule is a common mnemonic for understanding orientation of axes in 3-dimensional space.

Alternator electromechanical device that converts mechanical energy to electrical energy in the form of alternating current

An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines. An alternator that uses a permanent magnet for its magnetic field is called a magneto. Alternators in power stations driven by steam turbines are called turbo-alternators. Large 50 or 60 Hz three-phase alternators in power plants generate most of the world's electric power, which is distributed by electric power grids.

Stator stationary part of a rotary system

The stator is the stationary part of a rotary system, found in electric generators, electric motors, sirens, mud motors or biological rotors. Energy flows through a stator to or from the rotating component of the system. In an electric motor, the stator provides a rotating magnetic field that drives the rotating armature; in a generator, the stator converts the rotating magnetic field to electric current. In fluid powered devices, the stator guides the flow of fluid to or from the rotating part of the system.

Induction motor AC electric motor in which the electric current in the rotor needed to produce torque is obtained by electromagnetic induction from the magnetic field of the stator winding

An induction motor or asynchronous motor is an AC electric motor in which the electric current in the rotor needed to produce torque is obtained by electromagnetic induction from the magnetic field of the stator winding. An induction motor can therefore be made without electrical connections to the rotor. An induction motor's rotor can be either wound type or squirrel-cage type.

Barlows wheel

Barlow's wheel was an early demonstration of a homopolar motor, designed and built by English mathematician and physicist, Peter Barlow in 1822. It consists of a star-shaped wheel free to turn suspended over a trough of the liquid metal mercury, with the points dipping into the mercury, between the poles of a horseshoe magnet. A DC electric current passes from the hub of the wheel, through the wheel into the mercury and out through an electrical contact dipping into the mercury. The Lorentz force of the magnetic field on the moving charges in the wheel causes the wheel to rotate. The presence of serrations on the wheel is unnecessary and the apparatus will work with a round metal disk, usually made of copper.

Dielectric heating

Dielectric heating, also known as electronic heating, radio frequency heating, and high-frequency heating, is the process in which a radio frequency (RF) alternating electric field, or radio wave or microwave electromagnetic radiation heats a dielectric material. At higher frequencies, this heating is caused by molecular dipole rotation within the dielectric.

Faraday paradox

The Faraday paradox or Faraday's paradox is any experiment in which Michael Faraday's law of electromagnetic induction appears to predict an incorrect result. The paradoxes fall into two classes:

Heliospheric current sheet magnetic field

The heliospheric current sheet is the surface within the Solar System where the polarity of the Sun's magnetic field changes from north to south. This field extends throughout the Sun's equatorial plane in the heliosphere. The shape of the current sheet results from the influence of the Sun's rotating magnetic field on the plasma in the interplanetary medium. A small electrical current flows within the sheet, about 10−10 A/m². The thickness of the current sheet is about 10,000 km near the orbit of the Earth.

The solar dynamo is the physical process that generates the Sun's magnetic field. A dynamo, essentially a naturally occurring electric generator in the Sun's interior, produces electric currents and a magnetic field, following the laws of Ampère, Faraday and Ohm, as well as the laws of hydrodynamics, which together form the laws of magnetohydrodynamics. The detailed mechanism of the solar dynamo is not known and is the subject of current research.

Rotational Brownian motion is the random change in the orientation of a polar molecule due to collisions with other molecules. It is an important element of theories of dielectric materials.

Gravitoelectromagnetism

Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity. Gravitomagnetism is a widely used term referring specifically to the kinetic effects of gravity, in analogy to the magnetic effects of moving electric charge. The most common version of GEM is valid only far from isolated sources, and for slowly moving test particles.

BO Microscopii is a star in the constellation Microscopium located about 170 light-years from the Sun. It has been dubbed "Speedy Mic" because of its very rapid rotation. The projected rotational velocity at the equator of this star is about 135 km/s (84 mi/s), which, with an estimated inclination of 70° to the line of sight from the Earth, means it completes a rotation every 0.380 ± 0.004 days. The photosphere of this star shows a high level of magnetic activity, with multiple star spots and prominences observed at the same time. As many as 25 prominences have been observed simultaneously, extending outward as far as 3.6 times the radius of the star. BO Mic is a flare star that undergoes sudden increases in X-ray and ultraviolet emissions. These events can emit a hundred times more energy than large solar flares. Speedy Mic is one of the most active stars in the vicinity of the Sun.

The impact of the solar wind onto the magnetosphere generates an electric field within the inner magnetosphere - the convection field-. Its general direction is from dawn to dusk. The co-rotating thermal plasma within the inner magnetosphere drifts orthogonal to that field and to the geomagnetic field Bo. The generation process is not yet completely understood. One possibility is viscous interaction between solar wind and the boundary layer of the magnetosphere (magnetopause). Another process may be magnetic reconnection. Finally, a hydromagnetic dynamo process in the polar regions of the inner magnetosphere may be possible. Direct measurements via satellites have given a fairly good picture of the structure of that field. A number of models of that field exists.

The corotation circle is the circle around the galactic center of a spiral galaxy, where the stars move at the same speed as the spiral arms. The radius of this circle is called corotation radius. Inside the circle the stars move faster and outside they move slower than the spiral arms.

A synestia is a rapidly spinning donut-shaped mass of vaporized rock. In computer simulations of giant impacts of rotating objects a synestia can form if the total angular momentum is greater than the co-rotational limit. Beyond the co-rotational limit the velocity at the equator of a body would exceed the orbital velocity. In a synestia this results in an inner region rotating at a single rate with a loosely connected torus orbiting beyond it.

References