Crystal structure of boron-rich metal borides (data page)

Last updated

This article contains crystal structure data used in the article crystal structure of boron-rich metal borides.

Contents

Table I

Structure data for YAlB14 [1]
AtomSitexyzOcc.*biso2)
Y8i0.02511(8)1/40.64217(3)0.310(1)Anisotropic
Al4c1/41/41/40.708(3)Anisotropic
B18h00.1660(1)0.9682(1)10.35(1)
B28h00.1520(1)0.3745(1))10.39(1)
B38h00.0882(1)0.1704(1)10.35(1)
B416i0.1602(1)0.05917(6)0.83757(7)10.34(1)
B516j0.2482(1)0.08028(6)0.45487(8)10.35(1)
Anisotropic displacement parameters for YAlB14 [1]
AtomU112)U222)U332)U132)
Y0.087(2)0.00446(8)0.00466(8)−0.00045(9)
Al0.0112(3)0.0053(2)0.0196(3)0.0108(2)

Table II

Structure data for YB62 [3]
AtomSitexyzOcc.*Ueq.2)
B196i00.0374(2)0.0594(1)1.00.0101(7)
B296i00.0759(2)0.1171(2)1.00.0118(7)
B396i00.0387(2)0.1809(2)1.00.0115(7)
B496i00.1486(1)0.2418(1)1.00.0098(7)
B596i00.1855(2)0.1715(2)1.00.0112(7)
B6192j0.0389(1)0.1401(1)0.1220(1)1.00.0137(6)
B7192j0.0395(1)0.0816(1)0.2291(1)1.00.0120(6)
B8192j0.0630(1)0.0775(1)0.1586(1)1.00.0129(6)
B9192j0.0635(1)0.1455(1)0.1948(1)1.00.0137(6)
B10192j0.1328(3)0.1744(3)0.1975(3)0.758(19)0.0412(20)
B11192j0.2314(4)0.1607(3)0.3021(4)0.531(14)0.0427(24)
B12192j0.1733(4)0.1273(4)0.2581(5)0.293(17)0.0207(35)
B1364g0.2337(8)0.2337(8)0.2337(8)0.076(6)0.0395(98)
Y148f0.0542(3)0.250.250.437(9)0.0110(9)
Y248f0.0725(11)0.250.250.110(12)0.0414(43)

Table III

Structure data for YB41Si1.2a [4]
AtomSitexyzOcc.*biso2)
B1.18i0.4362(2)0.5491(2)0.0938(3)10.12(5)
B1.28i0.4660(2)0.4610(2)0.1572(3)10.15(5)
B1.34g0.4063(3)0.4711(3)010.19(7)
B1.44g0.4852(3)0.4078(3)010.14(6)
B2.18i0.2326(2)0.4909(2)0.0981(3)10.14(5)
B2.28i0.2101(2)0.3281(2)0.0956(3)10.13(5)
B2.38i0.1664(2)0.4147(2)0.1632(3)10.19(5)
B2.48i0.2749(2)0.4005(2)0.1586(3)10.13(4)
B2.54g0.1293(3)0.3702(3)010.11(6)
B2.64g0.1379(3)0.4694(3)010.11(6)
B2.74g0.3106(3)0.4451(3)010.15(7)
B2.84g0.2972(3)0.3466(3)010.20(7)
B3.18i0.3793(2)0.1879(2)0.0975(3)10.19(5)
B3.28i0.5354(2)0.2580(2)0.0946(3)10.13(5)
B3.38i0.4823(2)0.1772(2)0.1640(3)10.11(4)
B3.48i0.4350(2)0.2693(2)0.1584(3)10.12(5)
B3.54g0.4501(3)0.1247(3)010.19(6)
B3.64g0.3728(3)0.2753(3)010.28(7)
B3.74g0.4682(3)0.3146(3)010.12(6)
B3.84g0.5424(3)0.1724(3)010.14(6)
B4.18i0.2006(2)0.1543(2)0.0880(3)10.16(5)
B4.28i0.1315(2)0.0978(2)0.1785(3)10.09(4)
B4.38i0.1156(2)0.1965(2)0.1737(3)10.18(5)
B4.48i0.2107(2)0.2414(2)0.1753(3)10.15(4)
B4.58i0.2905(2)0.1676(2)0.1833(3)10.10(4)
B4.68i0.2377(2)0.0745(2)0.1817(3)10.15(4)
B4.78i0.1741(2)0.0671(2)0.3370(3)10.23(5)
B4.88i0.0972(2)0.1445(2)0.3316(3)10.15(5)
B4.984i0.1508(2)0.2379(2)0.3301(3)10.11(4)
B4.108i0.2612(2)0.2215(2)0.3352(3)10.15(4)
B4.118i0.2720(2)0.1169(2)0.3434(3)10.20(5)
B4.128i0.1884(2)0.1594(2)0.4149(3)10.28(5)
B5.18i0.1150(2)0.4078(2)0.3354(3)10.19(5)
B5.28i0.1066(2)0.3127(2)0.4060(3)10.18(5)
B5.38i0.0255(2)0.4553(2)0.4053(3)10.20(5)
B5.48i0.0175(2)0.3589(2)0.3358(3)10.18(4)
B5.54h0.4628(3)0.1121(3)1/210.27(7)
B5.64h0.1675(3)0.3812(3)1/210.39(7)
B5.74h0.1202(3)0.4681(3)1/210.31(7)
B5.84h0.0108(3)0.3023(3)1/210.28(7)
B6.18i0.3311(2)0.3858(2)0.3061(3)10.19(4)
B6.28i0.3530(2)0.4752(2)0.4064(3)10.35(5)
B6.38i0.4294(2)0.4214(2)0.3063(3)10.14(4)
B6.48i0.4150(2)0.3223(2)0.3052(3)10.18(4)
B6.58i0.5013(2)0.3652(2)0.4046(3)10.20(4)
B6.68i0.3268(2)0.2925(2)0.4058(3)10.43(5)
Si6.7b4h0.2784(3)0.3866(3)1/20.575(6)0.22(6)
B6.7b4h0.2785(13)0.3961(11)1/20.425(6)0.22(6)
Si6.8c4h0.4429(3)0.2787(3)1/20.478(6)0.17(7)
B6.8c4h0.4492(11)0.2818(12)1/20.522(6)0.17(7)
Si6.9d4h0.4655(3)0.4626(3)1/20.440(6)0.17(8)
B6.9d4h0.4589(9)0.4537(7)1/20.560(60)0.17(8)
B7.18i0.3911(4)0.3747(4)0.1181(8)10.30e
B7.28i0.3182(17)0.2183(16)0.502(31)0.46(1)0.30e
B7.34g0.4569(3)0.0212(2)00.23(1)0.30e
B7.44g0.0766(4)0.1555(6)00.29(1)0.30e
B7.54g0.1438(11)0.2507(11)00.18(1)0.30e
B7.64g0.2552(10)0.2629(9)00.43(1)0.30e
B7.74h0.2054(15)0.0230(14)1/20.08(1)0.30e
Y8i0.39628(1)0.05199(1)0.22964(3)10.22f
Si4h0.34402(8)0.07974(8)1/20.798(6)0.29f

a The number n in the atom designation Bn,n refers to the B12-nth icosahedron to which the Bn,n belongs. Si6.n and B6.n belong to the B12Si3 unit.

b,c,d The Si and B sites are in the same interstice, which is assumed to be fully occupied by both Si and B atoms with occupancies of Occ.(Si) and Occ.(B), respectively, where Occ.(Si)+Occ.(B) = 1. Position of the boron atom was adjusted independently by fixing the thermal parameters at the same value as for the Si atom in the same interstice.

e The temperature factor is fixed at this value.

f Equivalent isotropic temperature factor. It was calculated from the relation Beq. = 4/3(a2β11 + b2β22 + c2β33).

Table IVa

Structure data for homologous compounds.

a. Structure data of ScB15.5CN [5]
AtomSitexyzOcc.*Ueq.(nm2×103)
Sc2d1/32/30.4426(1)0.93(1)16.1(4)
B16i0.4909(4)0.5091(2)0.2177(2)13.8(4)
B26i0.5580(1)0.4420(2)0.0612(1)13.5(4)
B36i0.7737(2)0.2263(2)0.3175(2)14.5(4)
B46i0.8383(4)0.1617(2)0.1611(2)14.2(4)
B56i0.8945(2)0.1055(2)0.4331(2)14.8(4)
B61a00015(1)
C2c000.1338(3)14.1(9)
N2d1/32/30.2446(3)16.1(8)

Table IVb

b. Structure data of YB22C2N [6]
AtomSitexyzOcc.*biso3)
Y6c000.349(2)0.74(4)0.62(5)
B118h0.223(6)−0.223(6)0.442(3)1.02.37(0)
B218h0.557(2)0.442(8)0.349(4)1.02.37(0)
B318h0.151(8)0.303(6)0.404(3)1.02.37(0)
B418h0.438(0)0.562(0)0.379(0)1.02.37(0)
B56c2/31/30.454(2)1.01(4)2.50(4)
B618h0.499(6)0.500(4)0.417(5)1.02.37(0)
B718h0.102(1)−0.102(1)0.468(5)1.03.37(0)
B818h0.334(9)0.167(4)0.494(7)1.02.37(0)
C16c2/31/30.485(8)1.16(4)3.19(0)
C26c2/31/30.423(2)0.99(6)3.19(0)
N6c000.401(3)0.84(0)0.95(8)

Table IVc

c. Structure data of YB28.5C4 [7]
AtomSitexyzOcc.*Ueq.(nm2×103)
Y16c000.3200(1)0.83(9)7(1)
C26c000.2787(2)1.12(1)6(3)
C36c2/31/30.2129(2)1.06(2)5(3)
C46c2/31/30.2639(2)1.05(3)11(3)
B56c2/31/30.2385(3)1.12(1)17(4)
C66c1/3−1/30.1922(2)1.08(5)11(3)
B73b1/3−1/31/61.08(0)13(6)
B818h0.1096(8)−0.1096(8)0.2265(1)1.02(1)
B918h0.2136(17)0.1068(8)0.3677(1)1.04(1)
B1018h0.2177(18)0.1089(9)0.1780(1)1.03(1)
B1118h0.1703(8)−0.1703(8)0.1968(1)1.03(1)
B1218h0.2255(8)0.4511(17)0.2498(1)1.03(1)
B1318h0.4631(17)0.2316(8)0.3462(1)1.03(1)
B1418h0.1632(8)0.3263(17)0.2795(1)1.03(1)
B1518h0.5030(9)0.4970(9)0.2690(1)1.04(2)
B1618h0.3422(17)0.1711(8)0.2077(1)1.04(1)
BC176c000.2506(4)0.51(9)6(8)

Table Va

Structure data for YxB12C0.33Si3.0 (x=0.68) [8]
AtomSitexyzOcc.*Ueq.(nm2×103)
Y9e1/61/31/30.68(1)6.1(1)
B136i0.4916(1)0.1556(1)0.1353(1)1.04.5(1)
B236i0.3671(1)0.0400(1)0.2181(1)1.04.6(1)
B318h0.4838(2)0.2419(1)0.2307(1)1.07.4(2)
B418h0.2900(2)0.1450(1)0.2697(1)1.05.1(2)
C36c2/31/30.2666(12)0.58(5)*2.9(5)
Si16c1/32/30.2379(0)1.02.7(1)
Si218h0.4648(0)0.5352(0)0.2730(0)1.04.1(1)
Si36c2/31/30.2917(3)0.42(2)*1.1(2)

Table Vb

Interatomic distances between the listed sites of YxB12C0.33Si3.0 [8]
AtomsDistance (Å)AtomsDistance (Å)
C3-B31.703(7)C3-C32.198
Si3-B31.887(3)Si3-C30.413
C3-Si31.786(24)Si3-Si31.373(10)

Table VI

Structure data for ScB19+xSiy (x=0.7, y=0.18)a
AtomSitexyzOcc.Ueq.(nm2×103)
B18b−0.12280.23890.12611.05.06
B(2)8b−0.03330.13550.20971.05.5
B(3)8b−0.04280.31160.22941.05.18
B(4)8b−0.03980.39170.11591.05.36
B(5)8b−0.01130.11290.07861.06.27
B(6)8b−0.02730.2720.02771.05.24
B(7)8b0.11540.22580.2441.05.93
B(8)8b0.10270.39020.1921.05.46
B(9)8b0.12650.10580.15481.05.73
B(10)8b0.1270.19510.04531.05.04
B(11)8b0.11420.36240.06451.05.16
B(12)8b0.20930.26180.14031.05.22
B(13)8b0.31870.05880.36341.09.81
B(14)8b0.39330.20690.3261.08.95
B(15)8b0.21350.19780.34491.010.19
B(16)8b0.470.11420.41311.06.57
B(17)8b0.46620.28870.42391.06.27
B(18)8b0.19030.09460.45090.6529.15
B(19)8b0.27210.18610.54531.06.32
B(20)8b0.35290.0420.49331.06.37
B(21)8b0.44450.18650.5261.08.9
B(22)4a0.33540.33540.51.08.92
B(23)4a0.03470.03470.51.010.25
B(24)8b0.31330.33670.3810.63114.73
Sc(1)8b0.29640.48570.13160.8114.73
Sc(2)8b0.29810.3750.29680.19416.22
Sc(3)8b0.08490.01070.32150.1285.66
Si8b0.17580.00370.42270.20310.09

a Obtained by structure analysis.

Table VII

Structure data for ScB17C0.25.
AtomSitexyzOcc.Ueq.(nm2×103)
Sc12o0.4251(1)0.8502(1)0.7496(2)1.05.8(4)
B112p0.6699(4)0.7362(4)0.01.03.2(9)
B212p0.5300(4)0.6629(4)0.01.06.4(9)
B324r0.5985(3)0.7380(3)0.8351(4)1.03.7(7)
B412o0.1419(7)0.2838(5)0.9011(6)1.06.6(9)
B512o0.5242(4)0.2621(2)0.0986(4)1.04.3(9)
B64h1/32/30.8288(10)1.05(2)
B74h1/32/30.6165(10)1.05(2)
B824r0.3077(3)0.9274(3)0.6661(4)1.04.4(7)
B912g0.4395(4)0.00.5984(6)1.05.3(8)
B1012q0.5375(5)0.6562(5)1/21.06(1)
B1112n0.7571(4)0.00.5995(6)1.05.0(9)
B1212q0.2266(5)0.3405(4)1/21.06(1)
B1312o0.0771(2)0.1542(5)0.8347(7)1.04(1)
B1412n0.1327(4)0.00.6664(7)1.08(1)
B/C156l0.4694(3)0.9388(7)0.0B/C=0.73/0.278(1)
B/C166m0.3944(6)0.7888(7)1/2B/C=0.80/0.2013(1)
B176l0.0391(12)0.0782(24)0.00.5345(8)
B186m0.0379(10)0.0758(10)1/20.6744(6)

Table VIII

Structure data for Sc0.83−xB10.0−yC0.17+ySi0.083−z (x = 0.030, y = 0.36 and z = 0.026).
AtomSitexyzOcc.Ueq.(nm2×103)
B148h0.0613(2)0.0613(2)0.6638(2)1.06.62
B248h0.1209(2)0.1209(2)0.6832(2)1.07.03
B348h0.0864(2)0.0864(2)0.5206(2)1.07.83
B448h0.1478(2)0.1478(2)0.5438(2)1.08.18
B548h0.1899(2)0.1899(2)0.9098(2)1.08.17
B,C648h0.2219(2)0.2219(2)0.8378(2)B/C=0.58/0.428.38
B748h0.1068(2)0.1068(2)0.8320(2)1.05.93
B848h0.1410(2)0.1410(2)0.7596(2)1.06.85
B948h0.3018(2)0.3018(2)0.4030(3)1.013.28
B1048h0.2191(2)0.2191(2)0.9796(3)1.011.33
B1148h0.7816(2)0.7816(2)0.1217(3)1.013.61
B1248h0.3019(2)0.3019(2)0.4927(3)1.010.07
B1396i0.7693(2)0.9520(2)0.1663(2)1.014.96
B1448h0.0485(2)0.0485(2)0.8212(3)1.07.51
B1548h0.0340(2)0.0340(2)0.1403(3)1.015.19
B1696i0.7875(2)0.9762(2)0.0845(2)1.016.48
B1748h0.0326(2)0.0326(2)0.7384(3)1.014.68
B,C1816e0.3494(3)0.3494(3)0.3494(3)B/C=0.51/0.499.68
B,C1916e0.0623(3)0.0623(3)0.0623(3)B/C=0.85/0.1512.11
B,C2016e0.4447(2)0.4447(2)0.4447(2)B/C=0.73/0.278.90
C116e0.1947(3)0.1947(3)0.1947(3)1.015.45
Si14a0.2500(0)0.2500(0)0.2500(0)1.016.19
Si24a0.5000(0)0.5000(0)0.5000(0)0.3837.82
Sc116e0.9409(04)0.9409(04)0.9409(04)1.08.9a
Sc216e0.1270(07)0.1270(07)0.1270(07)0.9932.99a
Sc348h0.0689(04)0.0689(04)0.3216(04)0.9511.05a
AtomU11U22U33U23U13U12
Sc18.968.968.96−0.91−0.91−0.91
Sc232.9932.9932.99−9.42−9.42−9.42
Sc312 .2512.258.65−0.33−0.33−0.12

a Anisotropic thermal factors are applied to Sc sites, and Ueq (one-third of the trace of the orthogonalized Uij tensor) is listed in these columns.

Table IX

Structure data for Sc4.5−xB57−y+zC3.5−z (x =0.27, y = 1.1, z = 0.2).
AtomSitexyzOcc.Ueq.(nm2×103)
B18i0.3347(1)0.2050(2)0.6241(2)1.05.8(4)
B28i0.1410(2)−0.1034(2)0.2728(2)1.06.6(4)
B38i0.2612(1)0.2836(2)0.6215(2)1.05.8(4)
B48i0.4280(1)0.2589(2)0.6235(2)1.06.0(4)
B58i0.3484(2)0.2963(2)0.5582(2)1.05.3(4)
B68i0.2823(1)0.2312(2)0.7301(2)1.05.4(4)
B78i0.3070(1)0.3795(2)0.6211(2)1.05.1(4)
B88i0.4055(1)0.3652(2)0.6226(2)1.05.3(4)
B98i0.3898(1)0.2167(2)0.7324(2)1.05.8(4)
B108i0.3476(2)0.3034(2)0.7929(2)1.06.4(4)
B118i0.2682(1)0.3424(2)0.7236(2)1.05.1(4)
B128i0.4371(2)0.3209(2)0.7295(2)1.05.9(4)
B138i0.4587(2)−0.0243(2)0.8542(2)1.07.4(4)
B148i0.3552(1)−0.0209(2)0.7027(2)1.05.8(4)
B158i0.3940(1)0.0421(2)0.7953(2)1.05.4(4)
B168i0.3019(2)−0.0052(2)0.8126(2)1.06.5(4)
B178i0.6125(2)0.1769(2)0.8143(2)1.06.6(4)
B188i0.5250(2)0.1195(2)0.7960(2)1.05.9(4)
B198i0.0752(2)0.3872(2)0.0943(2)1.06.2(4)
B208i0.6791(2)0.1048(2)0.8810(2)1.06.3(4)
B218i0.4539(2)−0.0273(2)0.7328(2)1.05.7(4)
B228i0.5951(2)0.1197(2)0.7028(2)1.06.4(4)
B238i0.3716(2)−0.0065(2)0.9054(2)1.06.7(4)
B248i0.1886(2)0.3891(2)0.2408(2)1.06.1(4)
B254h0.5570(2)0.3161(2)0.5000(0)1.04.8(6)
B268i0.5896(2)0.1702(2)0.6004(2)1.06.1(4)
B274h0.4658(2)−0.1389(2)0.5000(0)1.05.9(6)
B288i0.6782(1)0.2169(2)0.5618(2)1.05.3(4)
B294h0.3651(2)−0.1350(2)0.5000(0)1.03.4(6)
B308i0.5115(1)0.2348(2)0.5630(2)1.05.4(4)
C314h0.6546(2)0.3025(2)0.5000(0)1.07.3(5)
B328i0.6020(2)0.2784(2)0.6021(2)1.05.7(4)
C334h0.1831(2)0.0261(2)0.5000(0)1.06.2(5)
C344h0.3222(2)−0.0486(2)0.5000(0)1.08.9(6)
B358i0.2270(2)0.0603(2)0.6016(2)1.06.3(4)
B368i0.7354(1)0.5437(2)0.4379(2)1.06.0(4)
B374h0.7189(2)0.3766(2)0.5000(0)1.06.4(6)
B384h0.3734(2)0.0459(2)0.5000(0)1.06.8(6)
B398i0.3187(1)0.0127(2)0.6004(2)1.05.6(4)
B408i0.3098(2)0.1178(2)0.5629(2)1.06.2(4)
B418i0.4507(1)0.4330(2)0.5607(2)1.05.2(4)
B428i0.0390(2)0.0341(2)0.6004(2)1.06.1(4)
C434h0.5297(2)0.4086(2)0.5000(0)1.07.7(6)
B444h0.0943(2)0.0123(2)0.5000(0)1.05.9(6)
B458i0.2050(2)0.1636(2)0.7716(2)1.06.0(4)
B468i0.0681(2)0.1263(2)0.1059(2)1.08.9(5)
B478i0.6154(1)0.3328(2)0.7019(2)1.05.3(4)
B488i0.0749(2)0.0661(2)0.7017(2)1.06.7(4)
B498i0.1163(2)0.2096(2)0.8164(2)1.06.3(4)
B508i0.0317(2)0.1444(2)0.7735(2)1.06.1(4)
B518i0.0415(2)0.0348(2)0.1842(2)1.07.5(4)
B528i0.1772(1)0.0777(2)0.7000(2)1.05.7(4)
B538i0.1314(2)−0.0047(2)0.2313(2)1.09.2(4)
B548i0.1279(2)0.0314(2)0.1094(2)1.018.9(6)
B558i0.2129(2)0.0524(2)0.1870(2)1.07.7(4)
B568i0.1744(2)0.1361(2)0.1069(2)1.09.2(5)
B578i0.7574(2)0.1419(2)0.9408(2)1.09.6(5)
B584g0.8776(2)0.2582(3)0.0000(0)1.09.5(6)
B598i0.8460(2)0.1852(2)0.9102(2)1.07.4(5)
B604g0.2774(2)0.2621(3)0.0000(0)1.010.1(7)
B614g0.4196(3)0.3404(3)0.0000(0)1.017.6(8)
B624g0.1589(4)0.8983(4)0.0000(0)0.586.0(16)
C/B638i0.4300(1)0.1383(1)0.7908(2)C/B=0.80/0.206.2(4)
B644g0.1305(4)−0.0080(4)0.0000(0)0.7814.9(15)
C654h0.5219(2)−0.0431(2)0.5000(0)1.012.6(6)
B664g0.9242(3)0.3500(3)0.0000(0)1.011.9(7)
B674g0.2231(2)0.1635(2)0.0000(0)1.08.6(6)
B684g0.0246(2)0.3536(2)0.0000(0)1.06.8(6)
B694g0.5216(2)0.3482(3)0.0000(0)1.08.3(6)
B704g0.8751(2)0.4428(3)0.0000(0)1.010.3(7)
B/Si718i0.1440(4)0.9256(4)0.0604(4)B+Si=0.30
(B/Si=0.9/0.1)
6.4(10)
Sc18i0.47761(2)0.24988(3)0.88052(3)0.976.0(1)a
Sc22a0.50000(0)0.50000(0)0.00000(0)0.9614.9(3)a
Sc38i0.44587(3)0.10615(3)0.63668(3)0.976.2(1)a
Sc48i0.31793(3)0.15473(3)0.87857(3)0.977.1(1)a
Sc54g0.13723(4)0.27037(4)0.00000(0)0.968.8(2)a
Sc64g0.24837(5)0.00566(5)0.00000(0)0.909.3(2)a
Sc72c0.50000(0)0.00000(0)0.00000(0)0.618.3(4)a
AtomU11U22U33U23U13U12
Sc15.5(2)7.6(2)4.9(2)−0.8(2)0.2(1)0.4(2)
Sc214.2(5)15.2(5)15.2(5)0.000.004.9(4)
Sc37.4(2)5.6(2)5.5(2)−0.3(1)0.3(2)1.2(1)
Sc44.4(2)11.5(2)5.4(2)0.1(2)0.7(1)−0.3(2)
Sc55.8(3)11.2(3)9.5(3)0.000.003.0(2)
Sc610.3(3)8.3(3)9.4(3)0.000.00−2.6(3)
Sc711.3(7)10.7(7)2.9(6)0.000.00−4.6(5)

a Anisotropic thermal factors are applied to Sc sites, and Ueq (one-third of the trace of the orthogonalized Uij tensor) is listed in these columns.

Table X

Structure data for Sc3.67−xB41.4−y−zC0.67+zSi0.33−w (x=0.52, y=1.42, z=1.17 and w=0.02).
AtomSitexyzOcc.Ueq.(nm2×103)
B16n0.8073(5)0.4037(3)0.0812(3)1.06.8(10)
B26n0.0650(5)0.5325(2)0.1400(2)1.06.0(9)
B36n0.9269(5)0.4634(2)0.0374(2)1.04.4(9)
B46n0.9436(5)0.4718(3)0.1852(3)1.06.9(10)
B512o0.8402(4)0.3568(3)0.1453(2)1.07.1(7)
B612o0.9843(3)0.3894(3)0.1412(2)1.06.0(7)
B712o0.0316(3)0.4545(3)0.0749(2)1.05.7(7)
B812o0.8989(4)0.3458(4)0.0781(2)1.07.1(7)
B96n0.1969(5)0.5984(3)0.1645(3)1.08.0(10)
B106n0.2446(5)0.6223(3)0.2375(3)1.08.2(11)
B116n0.2920(2)0.5839(5)0.1205(2)1.05.3(9)
B126n0.2647(3)0.5294(5)0.1913(2)1.05.7(9)
B136n0.2671(59)0.2671(5)0.3155(3)1.08.3(10)
B146n0.8217(3)0.1784(3)0.3748(3)1.012.2(11)
B156n0.7742(3)0.2258(3)0.2397(2)1.06.1(9)
B1612o0.7213(4)0.0679(4)0.3317(2)1.010.4(8)
B1712o0.8736(4)0.3358(4)0.2828(2)1.08.9(7)
B186n0.7304(3)0.2697(3)0.2990(3)1.012.0(12)
B1912o0.9027(4)0.2288(4)0.2599(2)1.08.7(7)
B2012o0.8261(5)0.3023(5)0.3556(2)1.017.5(10)
B/C216n0.0808(5)0.0808(5)0.3880(2)B/C=0.55/0.456.7(9)
B226n0.0675(3)0.0675(3)0.3478(2)1.06.8(10)
B236n0.9185(5)0.0408(2)0.2783(2)1.05.8(9)
B246n0.9333(3)0.1334(5)0.3221(2)1.06.0(10)
B/C256l0.3352(5)0.5516(5)0.0B/C=0.55/0.456.8(10)
B2612o0.3193(3)0.4403(4)0.0374(2)1.05.8(7)
B276n0.1829(2)0.3658(5)0.0603(2)1.04.2(9)
B286l0.2238(5)0.3231(5)0.01.05.4(9)
B296n0.2548(3)0.5096(5)0.0612(3)1.06.0(9)
B3012o0.1777(4)0.4848(4)0.3452(2)1.08.9(7)
B316n0.2658(3)0.5316(6)0.5902(3)1.011.8(11)
B326n0.1323(3)0.2646(5)0.3660(3)1.07.8(10)
B336n0.1854(3)0.3708(5)0.3161(3)1.07.7(10)
B3412o0.0915(4)0.3082(4)0.4271(2)1.08.7(7)
B3512o0.0677(4)0.3465(4)0.3582(2)1.09.6(7)
B3612o0.1183(5)0.4431(5)0.4173(2)1.015.6(9)
B376n0.2096(3)0.7905(3)0.4609(3)1.09.7(11)
B/C386m0.0027(5)0.1179(5)0.5B/C=0.65/0.356.8(9)
B396m0.7666(5)0.1089(5)0.51.06.9(10)
B4012o0.9869(4)0.2146(4)0.4628(2)1.07.4(7)
B/C416n0.9211(2)0.1578(5)0.4421(2)B/C=0.45/0.557.1(9)
B426n0.8514(3)0.1486(3)0.4387(3)1.06.7(9)
B436l0.2387(5)0.2133(5)0.01.06.4(10)
B4412o0.8843(3)0.2383(3)0.0392(2)1.06.0(7)
B453j0.1431(7)0.0716(3)0.01.03.3(13)
B466n0.2359(5)0.1180(2)0.0579(2)1.04.6(9)
B476n0.1969(3)0.3938(6)0.1835(3)1.012.4(12)
B486n0.1543(3)0.3086(5)0.1262(2)1.06.0(10)
B4912o0.0178(4)0.2465(4)0.2240(2)1.09.9(8)
B506n0.0872(2)0.1745(5)0.2267(2)1.06.6(9)
B5112o0.0563(4)0.3250(4)0.1626(2)1.08.7(7)
B526n0.1530(3)0.3060(6)0.2517(3)1.013.3(12)
B5312o0.1623(3)0.1884(3)0.1601(2)1.05.9(7)
B546m0.4507(8)0.3567(8)0.51.027.0(18)
B5512o0.4300(9)0.9827(9)0.4547(4)0.8743.8(29)
B566n0.5907(5)0.4093(5)0.3925(5)0.6617.7(32)
B576n0.8050(13)0.4025(7)0.4762(6)0.5116.9(40)
B5812o0.5007(9)0.3781(9)0.4206(5)0.4412.2(28)
B596n0.8881(16)0.4440(8)0.4595(8)0.5530.9(53)
C602i0.66670.33330.7126(5)1.015.9(21)
B611a0.00.00.01.010.5(27)
B626n0.1877(5)0.5939(3)0.3066(3)1.09.4(11)
C636n0.7421(2)0.2579(2)0.1798(2)1.08.6(9)
B/C646n0.9344(5)0.4672(2)0.2578(2)B/C=0.57/0.436.2(10)
B656n0.9172(3)0.0828(3)0.1237(3)1.06.1(9)
B661f0.66670.33330.51.043.4(68)
B/C672h0.33330.66670.5774(5)B/C=0.71/0.2910.5(22)
B682i0.66670.33330.0639(4)1.05.0(16)
B692h0.33330.66670.3006(8)0.490.0(44)
Si12i0.66670.33330.3919(2)0.8730.7(16)
Si22i0.66670.33330.2078(1)1.05.0(5)
Sc12g0.00.00.17777(8)0.985.5(4)a
Sc23j0.74237(6)0.74237(6)0.00.957.0(4)a
Sc36n0.07873(4)0.07873(4)0.06563(4)0.964.5(2)a
Sc412o0.07726(8)0.43056(8)0.24776(3)0.879.4(2)a
Sc56n0.82732(5)0.82732(5)0.14302(6)0.9619.5(4)a
Sc66n0.50007(6)0.50007(6)0.35580(6)0.9114.4(3)a
Sc73k0.40577(10)0.40577(10)0.50.8831.1(9)a
Sc86n0.74848(9)0.25152(9)0.45210(9)0.496.3(5)a
AtomU11U22U33U23U13U12
Sc14.7(5)4.7(5)7.1(8)0.00.02.4(3)
Sc28.5(6)8.5(6)7.3(6)0.00.06.8(6)
Sc34.6(3)4.6(3)4.1(4)0.2(2)0.2(2)2.1(4)
Sc47.0(4)8.5(4)11.6(3)4.2(3)1.4(3)3.1(2)
Sc526.9(6)26.9(6)18.2(6)2.8(2)2.8(2)23.6(7)
Sc613.6(5)13.6(5)16.4(6)0.1(2)0.1(2)7.1(5)
Sc715.0(9)15.0(9)66.7(21)0.00.010.3(9)
Sc84.9(7)4.9(7)7.9(9)0.8(3)0.8(3)1.7(7)

a Anisotropic thermal factors are applied to Sc sites, and Ueq (one-third of the trace of the orthogonalized Uij tensor) is listed in these columns.

Related Research Articles

A borate is any of a range of boron oxyanions, anions containing boron and oxygen, such as orthoborate BO3−3, metaborate BO−2, or tetraborate B4O2−7; or any salt of such anions, such as sodium metaborate, Na+[BO2] and borax (Na+)2[B4O7]2−. The name also refers to esters of such anions, such as trimethyl borate B(OCH3)3.

<span class="mw-page-title-main">Cubic crystal system</span> Crystallographic system where the unit cell is in the shape of a cube

In crystallography, the cubiccrystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.

<span class="mw-page-title-main">Boron carbide</span> Extremely hard ceramic compound

Boron carbide (chemical formula approximately B4C) is an extremely hard boron–carbon ceramic, a covalent material used in tank armor, bulletproof vests, engine sabotage powders, as well as numerous industrial applications. With a Vickers hardness of >30 GPa, it is one of the hardest known materials, behind cubic boron nitride and diamond.

<span class="mw-page-title-main">Superhard material</span> Material with Vickers hardness exceeding 40 gigapascals

A superhard material is a material with a hardness value exceeding 40 gigapascals (GPa) when measured by the Vickers hardness test. They are virtually incompressible solids with high electron density and high bond covalency. As a result of their unique properties, these materials are of great interest in many industrial areas including, but not limited to, abrasives, polishing and cutting tools, disc brakes, and wear-resistant and protective coatings.

A boride is a compound between boron and a less electronegative element, for example silicon boride (SiB3 and SiB6). The borides are a very large group of compounds that are generally high melting and are covalent more than ionic in nature. Some borides exhibit very useful physical properties. The term boride is also loosely applied to compounds such as B12As2 (N.B. Arsenic has an electronegativity higher than boron) that is often referred to as icosahedral boride.

<span class="mw-page-title-main">Boron trioxide</span> Chemical compound

Boron trioxide or diboron trioxide is the oxide of boron with the formula B2O3. It is a colorless transparent solid, almost always glassy (amorphous), which can be crystallized only with great difficulty. It is also called boric oxide or boria. It has many important industrial applications, chiefly in ceramics as a flux for glazes and enamels and in the production of glasses.

<span class="mw-page-title-main">Boron arsenide</span> Chemical compound

Boron arsenide is a chemical compound involving boron and arsenic, usually with a chemical formula BAs. Other boron arsenide compounds are known, such as the subarsenide B12As2. Chemical synthesis of cubic BAs is very challenging and its single crystal forms usually have defects.

Tin(II) bromide is a chemical compound of tin and bromine with a chemical formula of SnBr2. Tin is in the +2 oxidation state. The stability of tin compounds in this oxidation state is attributed to the inert pair effect.

<span class="mw-page-title-main">Aluminium diboride</span> Chemical compound

Aluminium diboride (AlB2) is a chemical compound made from the metal aluminium and the metalloid boron. It is one of two compounds of aluminium and boron, the other being AlB12, which are both commonly referred to as aluminium boride.

Aluminium dodecaboride is a superhard chemical compound with 17% aluminium content by weight.

<span class="mw-page-title-main">Boron suboxide</span> Chemical compound

Boron suboxide (chemical formula B6O) is a solid compound with a structure built of eight icosahedra at the apexes of the rhombohedral unit cell. Each icosahedron is composed of twelve boron atoms. Two oxygen atoms are located in the interstices along the [111] rhombohedral direction. Due to its short interatomic bond lengths and strongly covalent character, B6O displays a range of outstanding physical and chemical properties such as great hardness (close to that of rhenium diboride and boron nitride), low mass density, high thermal conductivity, high chemical inertness, and excellent wear resistance.

<span class="mw-page-title-main">Disodium octaborate</span> Chemical compound

Disodium octaborate is a borate of sodium, a chemical compound of sodium, boron, and oxygen — a salt with elemental formula Na2B8O13 or (Na+)2[B8O13]2−, also written as Na2O·4B2O3. It is a colorless crystalline solid, soluble in water.

<span class="mw-page-title-main">Yttrium borides</span> Chemical compound

Yttrium boride refers to a crystalline material composed of different proportions of yttrium and boron, such as YB2, YB4, YB6, YB12, YB25, YB50 and YB66. They are all gray-colored, hard solids having high melting temperatures. The most common form is the yttrium hexaboride YB6. It exhibits superconductivity at relatively high temperature of 8.4 K and, similar to LaB6, is an electron cathode. Another remarkable yttrium boride is YB66. It has a large lattice constant (2.344 nm), high thermal and mechanical stability, and therefore is used as a diffraction grating for low-energy synchrotron radiation (1–2 keV).

<span class="mw-page-title-main">Allotropes of boron</span> Materials made only out of boron

Boron can be prepared in several crystalline and amorphous forms. Well known crystalline forms are α-rhombohedral (α-R), β-rhombohedral (β-R), and β-tetragonal (β-T). In special circumstances, boron can also be synthesized in the form of its α-tetragonal (α-T) and γ-orthorhombic (γ) allotropes. Two amorphous forms, one a finely divided powder and the other a glassy solid, are also known. Although at least 14 more allotropes have been reported, these other forms are based on tenuous evidence or have not been experimentally confirmed, or are thought to represent mixed allotropes, or boron frameworks stabilized by impurities. Whereas the β-rhombohedral phase is the most stable and the others are metastable, the transformation rate is negligible at room temperature, and thus all five phases can exist at ambient conditions. Amorphous powder boron and polycrystalline β-rhombohedral boron are the most common forms. The latter allotrope is a very hard grey material, about ten percent lighter than aluminium and with a melting point (2080 °C) several hundred degrees higher than that of steel.

<span class="mw-page-title-main">Crystal structure of boron-rich metal borides</span> Boron chemical complexes

Metals, and specifically rare-earth elements, form numerous chemical complexes with boron. Their crystal structure and chemical bonding depend strongly on the metal element M and on its atomic ratio to boron. When B/M ratio exceeds 12, boron atoms form B12 icosahedra which are linked into a three-dimensional boron framework, and the metal atoms reside in the voids of this framework. Those icosahedra are basic structural units of most allotropes of boron and boron-rich rare-earth borides. In such borides, metal atoms donate electrons to the boron polyhedra, and thus these compounds are regarded as electron-deficient solids.

Silicon borides (also known as boron silicides) are lightweight ceramic compounds formed between silicon and boron. Several stoichiometric silicon boride compounds, SiBn, have been reported: silicon triboride, SiB3, silicon tetraboride, SiB4, silicon hexaboride, SiB6, as well as SiBn (n = 14, 15, 40, etc.). The n = 3 and n = 6 phases were reported as being co-produced together as a mixture for the first time by Henri Moissan and Alfred Stock in 1900 by briefly heating silicon and boron in a clay vessel. The tetraboride was first reported as being synthesized directly from the elements in 1960 by three independent groups: Carl Cline and Donald Sands; Ervin Colton; and Cyrill Brosset and Bengt Magnusson. It has been proposed that the triboride is a silicon-rich version of the tetraboride. Hence, the stoichiometry of either compound could be expressed as SiB4 - x where x = 0 or 1. All the silicon borides are black, crystalline materials of similar density: 2.52 and 2.47 g cm−3, respectively, for the n = 3(4) and 6 compounds. On the Mohs scale of mineral hardness, SiB4 - x and SiB6 are intermediate between diamond (10) and ruby (9). The silicon borides may be grown from boron-saturated silicon in either the solid or liquid state.

The phosphidosilicates or phosphosilicides are inorganic compounds containing silicon bonded to phosphorus and one or more other kinds of elements. In the phosphosilicates each silicon atom is surrounded by four phosphorus atoms in a tetrahedron. The triphosphosilicates have a SiP3 unit, that can be a planar triangle like carbonate CO3. The phosphorus atoms can be shared to form different patterns e.g. [Si2P6]10− which forms pairs, and [Si3P7]3− which contains two-dimensional double layer sheets. [SiP4]8− with isolated tetrahedra, and [SiP2]2− with a three dimensional network with shared tetrahedron corners. SiP clusters can be joined, not only by sharing a P atom, but also by way of a P-P bond. This does not happen with nitridosilicates or plain silicates.

Borate phosphates are mixed anion compounds containing separate borate and phosphate anions. They are distinct from the borophosphates where the borate is linked to a phosphate via a common oxygen atom. The borate phosphates have a higher ratio of cations to number of borates and phosphates, as compared to the borophosphates.

Silicide carbides or carbide silicides are compounds containing anions composed of silicide (Si4−) and carbide (C4−) or clusters therof. They can be considered as mixed anion compounds or intermetallic compounds, as silicon could be considered as a semimetal.

Samarium compounds are compounds formed by the lanthanide metal samarium (Sm). In these compounds, samarium generally exhibits the +3 oxidation state, such as SmCl3, Sm(NO3)3 and Sm(C2O4)3. Compounds with samarium in the +2 oxidation state are also known, for example SmI2.

References

  1. 1 2 Korsukova MM, Gurin VN, Kuz'ma YB, Chaban NF, Chikhrij SI, Moshchalkov VV, Braudt NB, Gippius AA, Nyan KK (1989). "Crystal Structure, Electrical, and Magnetic Properties of the New Ternary Compounds LnAlB44". Physica Status Solidi A. 114 (1): 265. Bibcode:1989PSSAR.114..265K. doi:10.1002/pssa.2211140126.
  2. Minerals Yearbook. The Bureau. 1960.
  3. Tanaka T, Kamiya K, Numazawa T, Sato A, Takenouchi S (2006). "The effect of transition metal doping on thermal conductivity of YB66". Z. Kristallogr. 221 (5–7): 472. Bibcode:2006ZK....221..472T. doi:10.1524/zkri.2006.221.5-7.472. S2CID   94723178.
  4. Higashi I, Tanaka T, Kobayashi K, Ishizawa Y, Takami M (1997). "Crystal Structure of YB41Si1.2". J. Solid State Chem. 133 (1): 11. Bibcode:1997JSSCh.133...11H. doi:10.1006/jssc.1997.7307.
  5. Leithe-Jasper A, Tanaka T, Bourgeois L, Mori T, Michiue Y (2004). "New quaternary carbon and nitrogen stabilized polyborides: REB15.5CN (RE: Sc, Y, Ho, Er, Tm, Lu), crystal structure and compound formation". J. Solid State Chem. 177 (2): 431. Bibcode:2004JSSCh.177..431L. doi:10.1016/j.jssc.2003.02.003.
  6. Zhang FX, Leithe-Jasper A, Xu J, Matsui Y, Tanaka T, Okada S (2001). "Novel Rare Earth Boron-Rich Solids". J. Solid State Chem. 159 (1): 174. Bibcode:2001JSSCh.159..174Z. doi:10.1006/jssc.2001.9147.
  7. Zhang FX, Xu FF, Mori T, Liu QL, Sato A, Tanaka T (2001). "Crystal structure of new rare-earth boron-rich solids: REB28.5C4". J. Alloys Compd. 329 (1–2): 168. doi:10.1016/S0925-8388(01)01581-X.
  8. 1 2 Tanaka T, Sato A, Zhang FX (2009). "Structure refinement of quaternary RE-B-C-Si compounds: Y3−x(B12)3(CSi)Si8 (x ≈ 0.96) and Dy3−x(B12)3(CSi)Si8 (x ≈ 0.90)". J. Phys.: Conf. Ser. 176 (1): 012015. Bibcode:2009JPhCS.176a2015T. doi: 10.1088/1742-6596/176/1/012015 .