Dielectric wireless receiver

Last updated

Dielectric wireless receiver is a type of radiofrequency receiver front-end featuring a complete absence of electronic circuitry and metal interconnects. It offers immunity against damage from intense electromagnetic radiation, produced by EMP and HPM sources. This receiver is known as ADNERF (an acronym used to signify an All-Dielectric Non-Electronic Radio Front-End). ADNERF is a type of Electro-Magnetic Pulse Tolerant Microwave Receiver (EMPiRe).

Contents

Background

The continuing trend towards reduced feature size and voltage in integrated circuits renders modern electronics highly susceptible to damages caused by High Power Microwave (HPM) and other microwave based directed energy sources. These induce high voltage transient surges of thousands of volts which can punch through the gate insulator in the transistor and can destroy the circuit’s metal interconnects. To immunize electronic systems against such threats, the “soft spots” (metal and transistor) in a conventional receiver front-end, must be eliminated.

Operation

Fig. 1 Concept of the photonic-assisted all-dielectric RF front-end technology. An electro-optic (EO) powered dielectric antenna captures the free-space RF signal. The embedded optical link provides complete electrical isolation between the air interface and the electronic circuitry, which is located only after the photodetector (PD). ADNERF Concept Schematic.png
Fig. 1 Concept of the photonic-assisted all-dielectric RF front-end technology. An electro-optic (EO) powered dielectric antenna captures the free-space RF signal. The embedded optical link provides complete electrical isolation between the air interface and the electronic circuitry, which is located only after the photodetector (PD).
Fig. 2 Details of the receiver front-end design. a, Three-dimensional drawing of the DRA. b, Numerical simulation of the distribution of the electric field of the
T
M
011
+
d
{\displaystyle TM_{011+\delta }}
mode inside the DRA in meridian plane. ADNERF design 3D&efield.png
Fig. 2 Details of the receiver front-end design. a, Three-dimensional drawing of the DRA. b, Numerical simulation of the distribution of the electric field of the mode inside the DRA in meridian plane.

The basic concept of this photonic-assisted all-dielectric RF front-end technology is shown in Fig. 1. The Dielectric Resonator Antenna (DRA) in the front-end, functions as a concentrator of incoming electromagnetic field. When the electromagnetic (EM) field excites the resonance of DRA, a mode field pattern is built up inside the structure. The EO resonator is placed at the location of the peak field magnitude (Fig. 2). The EO resonator converts the received EM signal to an intensity modulated optical signal which is then carried away from the antenna front-end via an optical fiber. At the remote location, the signal is converted back to an RF signal which is then amplified and processed using conventional techniques. This front-end design significantly increases the threshold for damage associated with high power microwave signals. The lack of metal interconnects eliminates the one source of failure. In addition, the charge isolation provided by the optical link protects the electronic circuitry. Good sensitivity can be achieved due to signal enhancement provided by the microwave resonance in the DRA and optical resonance in the EO resonator. The modulating E-field (ERF) applied to the resonator should not be uniform across the disk otherwise no modulation occurs. To prevent this from happening, the EO resonator is placed off center from the symmetrical axis of DRA as shown in Fig. 2. The location of the EO resonator is chosen to coincide with the peak EM field inside the DRA, which is identified using 3-D EM simulations.

Related Research Articles

Microwave Form of electromagnetic radiation

Microwaves are a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter; with frequencies between 300 MHz (1 m) and 300 GHz (1 mm). Different sources define different frequency ranges as microwaves; the above broad definition includes both UHF and EHF bands. A more common definition in radio-frequency engineering is the range between 1 and 100 GHz. In all cases, microwaves include the entire SHF band at minimum. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

Waveguide structure that guides waves, typically electromagnetic waves

A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave amplitudes decrease according to the inverse square law as they expand into three dimensional space.

Resonator Device or system that exhibits resonance

A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator can be either electromagnetic or mechanical. Resonators are used to either generate waves of specific frequencies or to select specific frequencies from a signal. Musical instruments use acoustic resonators that produce sound waves of specific tones. Another example is quartz crystals used in electronic devices such as radio transmitters and quartz watches to produce oscillations of very precise frequency.

Quasinormal modes (QNM) are the modes of energy dissipation of a perturbed object or field, i.e. they describe perturbations of a field that decay in time.

Metamaterial materials engineered to have properties that have not yet been found in nature

A metamaterial is a material engineered to have a property that is not found in naturally occurring materials. They are made from assemblies of multiple elements fashioned from composite materials such as metals and plastics. The materials are usually arranged in repeating patterns, at scales that are smaller than the wavelengths of the phenomena they influence. Metamaterials derive their properties not from the properties of the base materials, but from their newly designed structures. Their precise shape, geometry, size, orientation and arrangement gives them their smart properties capable of manipulating electromagnetic waves: by blocking, absorbing, enhancing, or bending waves, to achieve benefits that go beyond what is possible with conventional materials.

A dielectric resonator is a piece of dielectric (nonconductive) material, usually ceramic, that is designed to function as a resonator for radio waves, generally in the microwave and millimeter wave bands. The microwaves are confined inside the resonator material by the abrupt change in permittivity at the surface, and bounce back and forth between the sides. At certain frequencies, the resonant frequencies, the microwaves form standing waves in the resonator, oscillating with large amplitudes. Dielectric resonators generally consist of a "puck" of ceramic that has a large dielectric constant and a low dissipation factor. The resonant frequency is determined by the overall physical dimensions of the resonator and the dielectric constant of the material.

Split-ring resonator

A split-ring resonator (SRR) is an artificially produced structure common to metamaterials. Their purpose is to produce the desired magnetic susceptibility in various types of metamaterials up to 200 terahertz. These media create the necessary strong magnetic coupling to an applied electromagnetic field, not otherwise available in conventional materials. For example, an effect such as negative permeability is produced with a periodic array of split ring resonators.

A dielectric resonator antenna (DRA) is a radio antenna mostly used at microwave frequencies and higher, that consists of a block of ceramic material of various shapes, the dielectric resonator, mounted on a metal surface, a ground plane. Radio waves are introduced into the inside of the resonator material from the transmitter circuit and bounce back and forth between the resonator walls, forming standing waves. The walls of the resonator are partially transparent to radio waves, allowing the radio power to radiate into space.

Opto-electronic oscillator

An opto-electronic oscillator (OEO) is an optoelectronic circuit that produces repetitive electronic sine wave and/or modulated optical continuous wave signals.

The time-stretch analog-to-digital converter (TS-ADC), also known as the time stretch enhanced recorder (TiSER), is an analog-to-digital converter (ADC) system that has the capability of digitizing very high bandwidth signals that cannot be captured by conventional electronic ADCs. Alternatively, it is also known as the photonic time stretch (PTS) digitizer, since it uses an optical frontend. It relies on the process of time-stretch, which effectively slows down the analog signal in time before it can be digitized by a slow electronic ADC.

In integrated circuits, optical interconnects refers to any system of transmitting signals from one part of an integrated circuit to another using light. Optical interconnects have been the topic of study due to the high latency and power consumption incurred by conventional metal interconnects in transmitting electrical signals over long distances, such as in interconnects classed as global interconnects. The International Technology Roadmap for Semiconductors (ITRS) has highlighted interconnect scaling as a problem for the semiconductor industry.

Microwave cavity

A microwave cavity or radio frequency (RF) cavity is a special type of resonator, consisting of a closed metal structure that confines electromagnetic fields in the microwave region of the spectrum. The structure is either hollow or filled with dielectric material. The microwaves bounce back and forth between the walls of the cavity. At the cavity's resonant frequencies they reinforce to form standing waves in the cavity. Therefore, the cavity functions similarly to an organ pipe or sound box in a musical instrument, oscillating preferentially at a series of frequencies, its resonant frequencies. Thus it can act as a bandpass filter, allowing microwaves of a particular frequency to pass while blocking microwaves at nearby frequencies.

Terahertz metamaterial

A terahertz metamaterial is a class of composite metamaterials designed to interact at terahertz (THz) frequencies. The terahertz frequency range used in materials research is usually defined as 0.1 to 10 THz.

Metamaterial antenna

Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often microscopic, structures to produce unusual physical properties. Antenna designs incorporating metamaterials can step-up the antenna's radiated power.

Tunable metamaterial

A tunable metamaterial is a metamaterial with a variable response to an incident electromagnetic wave. This includes remotely controlling how an incident electromagnetic wave interacts with a metamaterial. This means the capability to determine whether the EM wave is transmitted, reflected, or absorbed. In general, the lattice structure of the tunable metamaterial is adjustable in real time, making it possible to reconfigure a metamaterial device during operation. It encompasses developments beyond the bandwidth limitations in left-handed materials by constructing various types of metamaterials. The ongoing research in this domain includes electromagnetic materials that are very meta which mean good and has a band gap metamaterials (EBG), also known as photonic band gap (PBG), and negative refractive index material (NIM).

History of metamaterials

The history of metamaterials begins with artificial dielectrics in microwave engineering as it developed just after World War II. Yet, there are seminal explorations of artificial materials for manipulating electromagnetic waves at the end of the 19th century. Hence, the history of metamaterials is essentially a history of developing certain types of manufactured materials, which interact at radio frequency, microwave, and later optical frequencies.

Coplanar waveguide type of planar transmission line

Coplanar waveguide is a type of electrical planar transmission line which can be fabricated using printed circuit board technology, and is used to convey microwave-frequency signals. On a smaller scale, coplanar waveguide transmission lines are also built into monolithic microwave integrated circuits. Conventional coplanar waveguide (CPW) consists of a single conducting track printed onto a dielectric substrate, together with a pair of return conductors, one to either side of the track. All three conductors are on the same side of the substrate, and hence are coplanar. The return conductors are separated from the central track by a small gap, which has an unvarying width along the length of the line. Away from the central conductor, the return conductors usually extend to an indefinite but large distance, so that each is notionally a semi-infinite plane.

A nanophotonic resonator or nanocavity is an optical cavity which is on the order of tens to hundreds of nanometers in size. Optical cavities are a major component of all lasers, they are responsible for providing amplification of a light source via positive feedback, a process known as amplified spontaneous emission or ASE. Nanophotonic resonators offer inherently higher light energy confinement than ordinary cavities, which means stronger light-material interactions, and therefore lower lasing threshold provided the quality factor of the resonator is high. Nanophotonic resonators can be made with photonic crystals, silicon, diamond, or metals such as gold.

In integrated circuits (ICs), interconnects are structures that connect two or more circuit elements together electrically. The design and layout of interconnects on an IC is vital to its proper function, performance, power efficiency, reliability, and fabrication yield. The material interconnects are made from depends on many factors. Chemical and mechanical compatibility with the semiconductor substrate, and the dielectric in between the levels of interconnect is necessary, otherwise barrier layers are needed. Suitability for fabrication is also required; some chemistries and processes prevent integration of materials and unit processes into a larger technology (recipe) for IC fabrication. In fabrication, interconnects are formed during the back-end-of-line after the fabrication of the transistors on the substrate.

Photonic topological insulators are artificial electromagnetic materials that support topologically non-trivial, unidirectional states of light. Photonic topological phases are classical electromagnetic wave analogues of electronic topological phases studied in condensed matter physics. Similar to their electronic counterparts, they, can provide robust unidirectional channels for light propagation.

References

  1. Abrams, M. Dawn of the e-bomb. IEEE Spectrum40, 24-30 (2003).
  2. R. C. J. Hsu, A. Ayazi, B. Houshmand and B. Jalali, “All-Dielectric Photonic-Assisted Radio Front-End Technology,Nature Photonics1, 535–538 (2007).
  3. A. Ayazi, C. J. Hsu, B. Houshmand, W. H. Steier, and B. Jalali, “All-dielectric photonics assisted wireless receiver,” Optics Express (2008).
  4. DARPA's EMPiRe program.