Eilenberg's inequality

Last updated

Eilenberg's inequality, also known as the coarea inequality is a mathematical inequality for Lipschitz-continuous functions between metric spaces. Informally, it gives an upper bound on the average size of the fibers of a Lipschitz map in terms of the Lipschitz constant of the function and the measure of the domain.

Contents

The Eilenberg's inequality has applications in geometric measure theory and manifold theory. It is also a key ingredient in the proof of the coarea formula.

Formal statement

Let ƒ : X  Y be a Lipschitz-continuous function between metric spaces whose Lipschitz constant is denoted by Lip ƒ. Let s and t be nonnegative real numbers. Then, Eilenberg's inequality states that

for any A  X.

The use of upper integral is necessary because in general the function may fail to be Ht measurable.

History

The inequality was first proved by Eilenberg in 1938 for the case when the function was the distance to a fixed point in the metric space. Then it was generalized in 1943 by Eilenberg and Harold to the case of any real-valued Lipschitz function on a metric space.

The inequality in the form above was proved by Federer in 1954, except that he could prove it only under additional assumptions that he conjectured were unnecessary. Years later, Davies proved some deep results about Hausdorff contents and this conjecture was proved as a consequence. But recently a new proof, independent of Davies's result, has been found as well. [1]

About the proof

In many texts the inequality is proved for the case where the target space is a Euclidean space or a manifold. [2] This is because the isodiametric inequality is available (locally in the case of manifolds), which allows for a straightforward proof. The isodiametric inequality is not available in general metric spaces. The proof of Eilenberg's inequality in the general case is quite involved and requires the notion of the so-called weighted integrals. [3] [1]

Related Research Articles

Lipschitz continuity Strong form of uniform continuity

In mathematical analysis, Lipschitz continuity, named after Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the Lipschitz constant of the function. For instance, every function that has bounded first derivatives is Lipschitz continuous.

In differential geometry, a Riemannian manifold or Riemannian space(M, g) is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p. A common convention is to take g to be smooth, which means that for any smooth coordinate chart (U, x) on M, the n2 functions

Diophantine approximation approximating real numbers with rational numbers

In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria.

Ricci flow

In the mathematical field of differential geometry, the Ricci flow, sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation; however, it exhibits many phenomena not present in the study of the heat equation. Many results for Ricci flow have also been shown for the mean curvature flow of hypersurfaces.

Shing-Tung Yau Chinese mathematician

Shing-Tung Yau is an American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University.

In the mathematical theory of metric spaces, a metric map is a function between metric spaces that does not increase any distance . These maps are the morphisms in the category of metric spaces, Met . They are also called Lipschitz functions with Lipschitz constant 1, nonexpansive maps, nonexpanding maps, weak contractions, or short maps.

In mathematics, specifically real analysis and functional analysis, the Kirszbraun theorem states that if U is a subset of some Hilbert space H1, and H2 is another Hilbert space, and

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.

In the mathematical discipline of complex analysis, the analytic capacity of a compact subset K of the complex plane is a number that denotes "how big" a bounded analytic function on C \ K can become. Roughly speaking, γ(K) measures the size of the unit ball of the space of bounded analytic functions outside K.

Richard S. Hamilton American mathematician

Richard Streit Hamilton is Davies Professor of Mathematics at Columbia University. He is known for contributions to geometric analysis and partial differential equations. He made foundational contributions to the theory of the Ricci flow and its use in the resolution of the Poincaré conjecture and geometrization conjecture in the field of geometric topology.

Systolic geometry

In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also a slower-paced Introduction to systolic geometry.

In geometric topology, Busemann functions are used to study the large-scale geometry of geodesics in Hadamard spaces and in particular Hadamard manifolds. They are named after Herbert Busemann, who introduced them; he gave an extensive treatment of the topic in his 1955 book "The geometry of geodesics".

In mathematics, the Calabi conjecture was a conjecture about the existence of certain "nice" Riemannian metrics on certain complex manifolds, made by Eugenio Calabi and proved by Shing-Tung Yau. Yau received the Fields Medal in 1982 in part for this proof.

In the mathematical field of Riemannian geometry, M. Gromov's systolic inequality bounds the length of the shortest non-contractible loop on a Riemannian manifold in terms of the volume of the manifold. Gromov's systolic inequality was proved in 1983; it can be viewed as a generalisation, albeit non-optimal, of Loewner's torus inequality and Pu's inequality for the real projective plane.

In differential geometry, Mikhail Gromov's filling area conjecture asserts that the hemisphere has minimum area among the orientable surfaces that fill a closed curve of given length without introducing shortcuts between its points.

In the mathematical field of geometric measure theory, the coarea formula expresses the integral of a function over an open set in Euclidean space in terms of integrals over the level sets of another function. A special case is Fubini's theorem, which says under suitable hypotheses that the integral of a function over the region enclosed by a rectangular box can be written as the iterated integral over the level sets of the coordinate functions. Another special case is integration in spherical coordinates, in which the integral of a function on Rn is related to the integral of the function over spherical shells: level sets of the radial function. The formula plays a decisive role in the modern study of isoperimetric problems.

In mathematics, the intrinsic flat distance is a notion for distance between two Riemannian manifolds which is a generalization of Federer and Fleming's flat distance between submanifolds and integral currents lying in Euclidean space.

In differential geometry, algebraic geometry, and gauge theory, the Kobayashi–Hitchin correspondence relates stable vector bundles over a complex manifold to Einstein–Hermitian vector bundles. The correspondence is named after Shoshichi Kobayashi and Nigel Hitchin, who independently conjectured in the 1980s that the moduli spaces of stable vector bundles and Einstein–Hermitian vector bundles over a complex manifold were essentially the same.

References

  1. 1 2 Esmayli, B., Hajłasz, P.: The Coarea Inequality (2020)(Arxiv Link)
  2. Yu. D. Burago and V. A. Zalgaller, Geometric inequalities. Translated from the Russian by A. B. Sosinskiĭ. Springer-Verlag, Berlin, 1988. ISBN   3-540-13615-0.
  3. (Doctoral Thesis) Reichel, Lorenz Philip, The coarea formula for metric space valued maps, 2009 https://doi.org/10.3929/ethz-a-005905811