Elementary definition

Last updated

In mathematical logic, an elementary definition is a definition that can be made using only finitary first-order logic, and in particular without reference to set theory or using extensions such as plural quantification.

Mathematical logic is a subfield of mathematics exploring the applications of formal logic to mathematics. It bears close connections to metamathematics, the foundations of mathematics, and theoretical computer science. The unifying themes in mathematical logic include the study of the expressive power of formal systems and the deductive power of formal proof systems.

In mathematics or logic, a finitary operation is an operation of finite arity, that is an operation that takes a finite number of input values. By contrast, an operation that may take an infinite number of input values is said to be infinitary. In standard mathematics, an operation is, by definition, finitary. Therefore these terms are used only in the context of infinitary logic.

First-order logic—also known as predicate logic and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects and allows the use of sentences that contain variables, so that rather than propositions such as Socrates is a man one can have expressions in the form "there exists x such that x is Socrates and x is a man" and there exists is a quantifier while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

Elementary definitions are of particular interest because they admit a complete proof apparatus while still being expressive enough to support most everyday mathematics (via the addition of elementarily-expressible axioms such as Zermelo–Fraenkel set theory (ZFC)).

Gödels completeness theorem theorem

Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first-order logic. It makes a close link between model theory that deals with what is true in different models, and proof theory that studies what can be formally proven in particular formal systems.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

Saying that a definition is elementary is a weaker condition than saying it is algebraic.

In mathematical logic, an algebraic definition is one that can be given using only equations between terms with free variables. Inequalities and quantifiers are specifically disallowed.

Related Research Articles

An axiom or postulate is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Greek axíōma (ἀξίωμα) 'that which is thought worthy or fit' or 'that which commends itself as evident.'

Mathematics Field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change. It has no generally accepted definition.

In mathematics, model theory is the study of classes of mathematical structures from the perspective of mathematical logic. The objects of study are models of theories in a formal language. A set of sentences in a formal language is one of the components that form a theory. A model of a theory is a structure that satisfies the sentences of that theory.

<i>Principia Mathematica</i> Three-volume work on the foundations of mathematics

The Principia Mathematica is a three-volume work on the foundations of mathematics written by Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. In 1925–27, it appeared in a second edition with an important Introduction to the Second Edition, an Appendix A that replaced ✸9 and all-new Appendix B and Appendix C. PM is not to be confused with Russell's 1903 The Principles of Mathematics. PM was originally conceived as a sequel volume to Russell's 1903 Principles, but as PM states, this became an unworkable suggestion for practical and philosophical reasons: "The present work was originally intended by us to be comprised in a second volume of Principles of Mathematics... But as we advanced, it became increasingly evident that the subject is a very much larger one than we had supposed; moreover on many fundamental questions which had been left obscure and doubtful in the former work, we have now arrived at what we believe to be satisfactory solutions."

Alfred Tarski Polish-American logician

Alfred Tarski, born Alfred Teitelbaum, was a Polish-American logician and mathematician of Polish-Jewish descent. Educated in Poland at the University of Warsaw, and a member of the Lwów–Warsaw school of logic and the Warsaw school of mathematics, he immigrated to the United States in 1939 where he became a naturalized citizen in 1945. Tarski taught and carried out research in mathematics at the University of California, Berkeley, from 1942 until his death in 1983.

In classical deductive logic, a consistent theory is one that does not entail a contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead. The syntactic definition states a theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences and the set of closed sentences provable from under some formal deductive system. The set of axioms is consistent when for no formula .

In mathematics, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory consists of an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system. A formal theory typically means an axiomatic system, for example formulated within model theory. A formal proof is a complete rendition of a mathematical proof within a formal system.

Several ways have been proposed to construct the natural numbers using set theory. These include the representation via von Neumann ordinals, commonly employed in axiomatic set theory, and a system based on equinumerosity that was proposed by Frege and by Russell.

In logic, a true/false decision problem is decidable if there exists an effective method for deriving the correct answer. Logical systems such as propositional logic are decidable if membership in their set of logically valid formulas can be effectively determined. A theory in a fixed logical system is decidable if there is an effective method for determining whether arbitrary formulas are included in the theory. Many important problems are undecidable, that is, it has been proven that no effective method for determining membership can exist for them.

In model theory, a branch of mathematical logic, an elementary class is a class consisting of all structures satisfying a fixed first-order theory.

Mathematics encompasses a growing variety and depth of subjects over history, and comprehension requires a system to categorize and organize the many subjects into more general areas of mathematics. A number of different classification schemes have arisen, and though they share some similarities, there are differences due in part to the different purposes they serve. In addition, as mathematics continues to be developed, these classification schemes must change as well to account for newly created areas or newly discovered links between different areas. Classification is made more difficult by some subjects, often the most active, which straddle the boundary between different areas.

In mathematics, a topos is a category that behaves like the category of sheaves of sets on a topological space. Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic.

In mathematical logic, an algebraic sentence is one that can be stated using only equations between terms with free variables. Inequalities and quantifiers are specifically disallowed. Sentential logic is the subset of first-order logic involving only algebraic sentences.

In mathematical logic, an elementary sentence is one that is stated using only finitary first-order logic, without reference to set theory or using any axioms which have consistency strength equal to set theory.

In mathematical logic, an elementary theory is one that involves axioms using only finitary first-order logic, without reference to set theory or using any axioms which have consistency strength equal to set theory.

Logic the systematic study of the form of arguments

Logic is the systematic study of the form of valid inference, and the most general laws of truth. A valid inference is one where there is a specific relation of logical support between the assumptions of the inference and its conclusion. In ordinary discourse, inferences may be signified by words such as therefore, thus, hence, ergo, and so on.

References