Elementary sentence

Last updated

In mathematical logic, an elementary sentence is one that is stated using only finitary first-order logic, without reference to set theory or using any axioms which have consistency strength equal to set theory.

Mathematical logic is a subfield of mathematics exploring the applications of formal logic to mathematics. It bears close connections to metamathematics, the foundations of mathematics, and theoretical computer science. The unifying themes in mathematical logic include the study of the expressive power of formal systems and the deductive power of formal proof systems.

In mathematics or logic, a finitary operation is an operation of finite arity, that is an operation that takes a finite number of input values. By contrast, an operation that may take an infinite number of input values is said to be infinitary. In standard mathematics, an operation is, by definition, finitary. Therefore these terms are used only in the context of infinitary logic.

First-order logic—also known as predicate logic and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects and allows the use of sentences that contain variables, so that rather than propositions such as Socrates is a man one can have expressions in the form "there exists x such that x is Socrates and x is a man" and there exists is a quantifier while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

Saying that a sentence is elementary is a weaker condition than saying it is algebraic.

In mathematical logic, an algebraic sentence is one that can be stated using only equations between terms with free variables. Inequalities and quantifiers are specifically disallowed. Sentential logic is the subset of first-order logic involving only algebraic sentences.

Related Research Articles

In mathematics, model theory is the study of classes of mathematical structures from the perspective of mathematical logic. The objects of study are models of theories in a formal language. A set of sentences in a formal language is one of the components that form a theory. A model of a theory is a structure that satisfies the sentences of that theory.

In classical deductive logic, a consistent theory is one that does not entail a contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead. The syntactic definition states a theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences and the set of closed sentences provable from under some formal deductive system. The set of axioms is consistent when for no formula .

Curry's paradox is a paradox in which an arbitrary claim F is proved from the mere existence of a sentence C that says of itself "If C, then F", requiring only a few apparently innocuous logical deduction rules. Since F is arbitrary, any logic having these rules proves everything. The paradox may be expressed in natural language and in various logics, including certain forms of set theory, lambda calculus, and combinatory logic.

In mathematical logic, a predicate is commonly understood to be a Boolean-valued function P: X→ {true, false}, called the predicate on X. However, predicates have many different uses and interpretations in mathematics and logic, and their precise definition, meaning and use will vary from theory to theory. So, for example, when a theory defines the concept of a relation, then a predicate is simply the characteristic function of a relation. However, not all theories have relations, or are founded on set theory, and so one must be careful with the proper definition and semantic interpretation of a predicate.

In logic and mathematics second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory.

In mathematical logic, the Löwenheim–Skolem theorem, named for Leopold Löwenheim and Thoralf Skolem, states that if a countable first-order theory has an infinite model, then for every infinite cardinal number κ it has a model of size κ. The result implies that first-order theories are unable to control the cardinality of their infinite models, and that no first-order theory with an infinite model can have a unique model up to isomorphism.

In logic, an atomic sentence is a type of declarative sentence which is either true or false and which cannot be broken down into other simpler sentences. For example, "The dog ran" is an atomic sentence in natural language, whereas "The dog ran and the cat hid." is a molecular sentence in natural language.

In model theory, a branch of mathematical logic, two structures M and N of the same signature σ are called elementarily equivalent if they satisfy the same first-order σ-sentences.

In model theory, a branch of mathematical logic, an elementary class is a class consisting of all structures satisfying a fixed first-order theory.

In mathematical logic, a theory is a set of sentences in a formal language. Usually a deductive system is understood from context. An element of a theory is then called a theorem of the theory. In deductive systems there is usually a subset called "the set of axioms" of the theory and the deductive system is called an "axiomatic system". Clearly, every axiom is also a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms.

Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.

An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics.

In mathematical logic, an elementary definition is a definition that can be made using only finitary first-order logic, and in particular without reference to set theory or using extensions such as plural quantification.

In mathematical logic, an algebraic definition is one that can be given using only equations between terms with free variables. Inequalities and quantifiers are specifically disallowed.

Informally in mathematical logic, an algebraic theory is one that uses axioms stated entirely in terms of equations between terms with free variables. Inequalities and quantifiers are specifically disallowed. Sentential logic is the subset of first-order logic involving only algebraic sentences.

In mathematical logic, an elementary theory is one that involves axioms using only finitary first-order logic, without reference to set theory or using any axioms which have consistency strength equal to set theory.

Logic the systematic study of the form of arguments

Logic is the systematic study of the form of valid inference, and the most general laws of truth. A valid inference is one where there is a specific relation of logical support between the assumptions of the inference and its conclusion. In ordinary discourse, inferences may be signified by words such as therefore, thus, hence, ergo, and so on.

References

Saunders Mac Lane American mathematician

Saunders Mac Lane was an American mathematician who co-founded category theory with Samuel Eilenberg.