This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations . (June 2020) (Learn how and when to remove this template message) |
In number theory, the Elkies trinomial curves are certain hyperelliptic curves constructed by Noam Elkies which have the property that rational points on them correspond to trinomial polynomials giving an extension of Q with particular Galois groups.
One curve, C168, gives Galois group PSL(2,7) from a polynomial of degree seven, and the other, C1344, gives Galois group AL(8), the semidirect product of a 2-elementary group of order eight acted on by PSL(2, 7), giving a transitive permutation subgroup of the symmetric group on eight roots of order 1344.
The equation of the curve C168 is:
The curve is a plane algebraic curve model for a Galois resolvent for the trinomial polynomial equation x7 + bx + c = 0. If there exists a point (x, y) on the (projectivized) curve, there is a corresponding pair (b, c) of rational numbers, such that the trinomial polynomial either factors or has Galois group PSL(2,7), the finite simple group of order 168. The curve has genus two, and so by Faltings theorem there are only a finite number of rational points on it. These rational points were proven by Nils Bruin using the computer program Kash to be the only ones on C168, and they give only four distinct trinomial polynomials with Galois group PSL(2,7): x7-7x+3 (the Trinks polynomial), (1/11)x7-14x+32 (the Erbach-Fisher-McKay polynomial) and two new polynomials with Galois group PSL(2,7),
and
On the other hand, the equation of curve C1344 is:
Once again the genus is two, and by Faltings theorem the list of rational points is finite. It is thought the only rational points on it correspond to polynomials x8+16x+28, x8+576x+1008, 19453x8+19x+2 which have Galois group AL(8), and x8+324x+567, which comes from two different rational points and has Galois group PSL(2, 7) again, this time as the Galois group of a polynomial of degree eight.
In mathematics, an equation is a statement that asserts the equality of two expressions, which are connected by the equals sign "=". The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any equality is an equation.
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. Every elliptic curve over a field of characteristic different from 2 and 3 can be described as a plane algebraic curve given by an equation of the form
In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.
In mathematics, Galois theory provides a connection between field theory and group theory. Using Galois theory, certain problems in field theory can be reduced to group theory, which is in some sense simpler and better understood. It has been used to solve classic problems including showing that two problems of antiquity cannot be solved as they were stated ; showing that there is no quintic formula; and showing which polygons are constructible.
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.
In algebra, a quintic function is a function of the form
In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A5 with 60 elements, isomorphic to PSL(2, 5).
In mathematics, an algebraic equation or polynomial equation is an equation of the form
In mathematics, the Nagell–Lutz theorem is a result in the diophantine geometry of elliptic curves, which describes rational torsion points on elliptic curves over the integers. It is named for Trygve Nagell and Élisabeth Lutz.
In number theory and algebraic geometry, a modular curveY(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curvesX(Γ) which are compactifications obtained by adding finitely many points to this quotient. The points of a modular curve parametrize isomorphism classes of elliptic curves, together with some additional structure depending on the group Γ. This interpretation allows one to give a purely algebraic definition of modular curves, without reference to complex numbers, and, moreover, prove that modular curves are defined either over the field Q of rational numbers, or a cyclotomic field. The latter fact and its generalizations are of fundamental importance in number theory.
In Galois theory, the inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers Q. This problem, first posed in the early 19th century, is unsolved.
In mathematics, an algebraic function is a function that can be defined as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are:
In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point.
A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties to the real numbers.
Schoof's algorithm is an efficient algorithm to count points on elliptic curves over finite fields. The algorithm has applications in elliptic curve cryptography where it is important to know the number of points to judge the difficulty of solving the discrete logarithm problem in the group of points on an elliptic curve.
The Schoof–Elkies–Atkin algorithm (SEA) is an algorithm used for finding the order of or calculating the number of points on an elliptic curve over a finite field. Its primary application is in elliptic curve cryptography. The algorithm is an extension of Schoof's algorithm by Noam Elkies and A. O. L. Atkin to significantly improve its efficiency.
In number theory, the classical modular curve is an irreducible plane algebraic curve given by an equation
In algebra, a septic equation is an equation of the form
In mathematics, an algebraic number fieldF is a finite degree field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector space over Q.
In Galois theory, a discipline within the field of abstract algebra, a resolvent for a permutation group G is a polynomial whose coefficients depend polynomially on the coefficients of a given polynomial p and has, roughly speaking, a rational root if and only if the Galois group of p is included in G. More exactly, if the Galois group is included in G, then the resolvent has a rational root, and the converse is true if the rational root is a simple root. Resolvents were introduced by Joseph Louis Lagrange and systematically used by Évariste Galois. Nowadays they are still a fundamental tool to compute Galois groups. The simplest examples of resolvents are