Eternal statement

Last updated

An eternal statement is a statement whose token instances all have the same truth value. For instance, every inscription or utterance of the sentence "On July 15, 2009 it rains in Boston" has the same truth value, no matter when or where it is asserted. This type of statement is distinguished from others in that its context will not influence its truth value. Essentially, an eternal statement is a true statement, regardless of how it used.

Related Research Articles

In any of several fields of study that treat the use of signs — for example, in linguistics, logic, mathematics, semantics, semiotics, and philosophy of language — an intension is any property or quality connoted by a word, phrase, or another symbol. In the case of a word, the word's definition often implies an intension. For instance, the intensions of the word plant include properties such as "being composed of cellulose ", "alive", and "organism", among others. A comprehension is the collection of all such intensions.

In philosophy and logic, the classical liar paradox or liar's paradox or antinomy of the liar is the statement of a liar that they are lying: for instance, declaring that "I am lying". If the liar is indeed lying, then the liar is telling the truth, which means the liar just lied. In "this sentence is a lie" the paradox is strengthened in order to make it amenable to more rigorous logical analysis. It is still generally called the "liar paradox" although abstraction is made precisely from the liar making the statement. Trying to assign to this statement, the strengthened liar, a classical binary truth value leads to a contradiction.

<span class="mw-page-title-main">Logical connective</span> Symbol connecting sentential formulas in logic

In logic, a logical connective is a logical constant. They can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective can be used to join the two atomic formulas and , rendering the complex formula .

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

In metaphilosophy and ethics, metaethics is the study of the nature, scope, and meaning of moral judgment. It is one of the three branches of ethics generally studied by philosophers, the others being normative ethics and applied ethics.

A proposition is a central concept in philosophy of language and related fields, often characterized as the primary bearer of truth or falsity. Propositions are also often characterized as being the kind of thing that declarative sentences denote. For instance the sentence "The sky is blue" denotes the proposition that the sky is blue. However, crucially, propositions are not themselves linguistic expressions. For instance, the English sentence "Snow is white" denotes the same proposition as the German sentence "Schnee ist weiß" even though the two sentences are not the same. Similarly, propositions can also be characterized as the objects of belief and other propositional attitudes. For instance if one believes that the sky is blue, what one believes is the proposition that the sky is blue. A proposition can also be thought of as a kind of idea: Collins Dictionary has a definition for proposition as "a statement or an idea that people can consider or discuss whether it is true."

In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values.

In philosophical epistemology, there are two types of coherentism: the coherence theory of truth; and the coherence theory of justification.

In logic, a predicate is a symbol that represents a property or a relation. For instance, in the first-order formula , the symbol is a predicate that applies to the individual constant . Similarly, in the formula , the symbol is a predicate that applies to the individual constants and .

<span class="mw-page-title-main">Is–ought problem</span> Philosophical problem articulated by David Hume

The is–ought problem, as articulated by the Scottish philosopher and historian David Hume, arises when one makes claims about what ought to be that are based solely on statements about what is. Hume found that there seems to be a significant difference between descriptive or positive statements and prescriptive or normative statements, and that it is not obvious how one can coherently move from descriptive statements to prescriptive ones. Hume's law or Hume's guillotine is the thesis that, if a reasoner only has access to non-moral and non-evaluative factual premises, the reasoner cannot logically infer the truth of moral statements.

In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: The input and output of a truth function are all truth values; a truth function will always output exactly one truth value; and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional.

Fitch's paradox of knowability is one of the fundamental puzzles of epistemic logic. It provides a challenge to the knowability thesis, which states that every truth is, in principle, knowable. The paradox is that this assumption implies the omniscience principle, which asserts that every truth is known. Essentially, Fitch's paradox asserts that the existence of an unknown truth is unknowable. So if all truths were knowable, it would follow that all truths are in fact known.

The fact–value distinction is a fundamental epistemological distinction described between:

  1. Statements of fact, based upon reason and physical observation, and which are examined via the empirical method.
  2. Statements of value, which encompass ethics and aesthetics, and are studied via axiology.

Logical truth is one of the most fundamental concepts in logic. Broadly speaking, a logical truth is a statement which is true regardless of the truth or falsity of its constituent propositions. In other words, a logical truth is a statement which is not only true, but one which is true under all interpretations of its logical components. Thus, logical truths such as "if p, then p" can be considered tautologies. Logical truths are thought to be the simplest case of statements which are analytically true. All of philosophical logic can be thought of as providing accounts of the nature of logical truth, as well as logical consequence.

In mathematical logic, a tautology is a formula or assertion that is true in every possible interpretation. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always true, regardless of the colour of the ball.

A truth-bearer is an entity that is said to be either true or false and nothing else. The thesis that some things are true while others are false has led to different theories about the nature of these entities. Since there is divergence of opinion on the matter, the term truth-bearer is used to be neutral among the various theories. Truth-bearer candidates include propositions, sentences, sentence-tokens, statements, beliefs, thoughts, intuitions, utterances, and judgements but different authors exclude one or more of these, deny their existence, argue that they are true only in a derivative sense, assert or assume that the terms are synonymous, or seek to avoid addressing their distinction or do not clarify it.

In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as proof by contraposition. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

In philosophical logic, supervaluationism is a semantics for dealing with irreferential singular terms and vagueness. It allows one to apply the tautologies of propositional logic in cases where truth values are undefined.

An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics.

The formal fallacy of the modal fallacy is a special type of fallacy that occurs in modal logic. It is the fallacy of placing a proposition in the wrong modal scope, most commonly confusing the scope of what is necessarily true. A statement is considered necessarily true if and only if it is impossible for the statement to be untrue and that there is no situation that would cause the statement to be false. Some philosophers further argue that a necessarily true statement must be true in all possible worlds.

References