Experimenter's regress

Last updated

In science, experimenter's regress refers to a loop of dependence between theory and evidence. In order to judge whether a new piece of evidence is correct we rely on theory-based predictions, and to judge the value of competing theories we rely on existing evidence. Cognitive bias affects experiments, and experiments determine which theory is valid. This issue is particularly important in new fields of science where there is no consensus regarding the values of various competing theories, and where the extent of experimental errors is not well known.

Contents

If experimenter's regress acts a positive feedback system, it can be a source of pathological science. An experimenter's strong belief in a new theory produces confirmation bias, and any biased evidence they obtain then strengthens their belief in that particular theory. Neither individual researchers nor entire scientific communities are immune to this effect: see N-rays and polywater.

Experimenter's regress is a typical relativistic phenomenon in the Empirical Programme of Relativism (EPOR). EPOR is very much concerned with a focus on social interactions, by looking at particular (local) cases and controversial issues in the context in which they happen. In EPOR, all scientific knowledge is perceived to be socially constructed and is thus "not given by nature". [1]

In his article Son of seven sexes: The Social Destruction of a Physical Phenomenon, Harry Collins argued that scientific experiments are subject to what he calls "experimenter's regress". [2] The outcome of a phenomenon that is studied for the first time is always uncertain and judgment in these situations, about what matters, requires considerable experience, tacit and practical knowledge. When a scientist runs an experiment, and the experiment yields a result, they can never be sure whether this is the result which they had expected. The result looks good because they know that their experimental protocol was correct; or the result looks wrong, and therefore there must be something wrong with their experimental protocol. The scientist, in other words, has to get the right answer in order to know that the experiment is working, or know that the experiment is working to get the right answer.

In his book Changing Order Collins defines the paradox of Experimenter's regress as follows:

This is a paradox which arises for those who want to use replication as a test of the truth of scientific knowledge claims. The problem is that, since experimentation is a matter of skilful practice, it can never be clear whether a second experiment has been done sufficiently well to count as a check on the results of a first. Some further test is needed to test the quality of the experiment - and so forth. [3] :2

Experimenter's regress occurs at the "research frontier" where the outcome of research is uncertain, for the scientist is dealing with "novel phenomena". Collins puts it this way: "usually, successful practice of an experimental skill is evident in a successful outcome to an experiment, but where the detection of a novel phenomenon is in question, it is not clear what should count as a 'successful outcome' – detection or non detection of the phenomenon" (Collins 1981: 34). In new fields of research where no paradigm has yet evolved and where no consensus exists as what counts as proper research, experimenter's regress is a problem that often occurs. Also, in situations where there is much controversy over a discovery or claim due to opposing interests, dissenters will often question experimental evidence that founds a theory. [4]

Because, for Collins, all scientific knowledge is socially constructed, there are no purely cognitive reasons or objective criteria that determine whether a claim is valid or not. The regress must be broken by "social negotiation" between scientists in the respective field. In the case of Gravitational Radiation, Collins notices that Weber, the scientist who is said to have discovered the phenomenon, could refute all the critique and had "a technical answer for every other point" but he was not able to convince other scientists and in the end he was not taken seriously anymore. [4]

The problems that come with "experimenter's regress" can never be fully avoided because scientific outcomes in EPOR are seen as negotiable and socially constructed. Acceptance of claims boils down to persuasion of other people in the community. Experimenter's regress can always become a problem in a world where "the natural world in no way constrains what is believed to be". Moreover, it is difficult to falsify a claim by replicating an experiment; aside from the practical issues of time, money, access to facilities, etc., an experimental outcome may depend on precise conditions, or tacit knowledge (i.e. unarticulated knowledge) that was not included in the published experimental methods. Tacit knowledge can never be fully articulated or translated into a set of rules.

Some commentators have argued that Collins's "experimenter's regress" is foreshadowed by Sextus Empiricus' argument that "if we shall judge the intellects by the senses, and the senses by the intellect, this involves circular reasoning inasmuch as it is required that the intellects should be judged first in order that the intellects may be tested [hence] we possess no means by which to judge objects" (quoted after Godin & Gingras 2002: 140 [5] ). Others have extended Collins's argument to the cases of theoretical practice ("theoretician's regress"; Kennefick 2000 [6] ) and computer simulation studies ("simulationist's regress"; Gelfert 2011; [7] Tolk 2017 [8] ).

See also

Related Research Articles

<span class="mw-page-title-main">Empirical research</span> Research using empirical evidence

Empirical research is research using empirical evidence. It is also a way of gaining knowledge by means of direct and indirect observation or experience. Empiricism values some research more than other kinds. Empirical evidence can be analyzed quantitatively or qualitatively. Quantifying the evidence or making sense of it in qualitative form, a researcher can answer empirical questions, which should be clearly defined and answerable with the evidence collected. Research design varies by field and by the question being investigated. Many researchers combine qualitative and quantitative forms of analysis to better answer questions that cannot be studied in laboratory settings, particularly in the social sciences and in education.

A paradigm shift is a fundamental change in the basic concepts and experimental practices of a scientific discipline. It is a concept in the philosophy of science that was introduced and brought into the common lexicon by the American physicist and philosopher Thomas Kuhn. Even though Kuhn restricted the use of the term to the natural sciences, the concept of a paradigm shift has also been used in numerous non-scientific contexts to describe a profound change in a fundamental model or perception of events.

The scientific method is an empirical method for acquiring knowledge that has been referred to while doing science since at least the 17th century. The scientific method involves careful observation coupled with rigorous skepticism, because cognitive assumptions can distort the interpretation of the observation. Scientific inquiry includes creating a testable hypothesis through inductive reasoning, testing it through experiments and statistical analysis, and adjusting or discarding the hypothesis based on the results.

Relativism is a family of philosophical views which deny claims to objectivity within a particular domain and assert that valuations in that domain are relative to the perspective of an observer or the context in which they are assessed. There are many different forms of relativism, with a great deal of variation in scope and differing degrees of controversy among them. Moral relativism encompasses the differences in moral judgments among people and cultures. Epistemic relativism holds that there are no absolute principles regarding normative belief, justification, or rationality, and that there are only relative ones. Alethic relativism is the doctrine that there are no absolute truths, i.e., that truth is always relative to some particular frame of reference, such as a language or a culture, while linguistic relativism asserts that a language's structures influence a speaker's perceptions. Some forms of relativism also bear a resemblance to philosophical skepticism. Descriptive relativism seeks to describe the differences among cultures and people without evaluation, while normative relativism evaluates the word truthfulness of views within a given framework.

Confirmation bias is the tendency to search for, interpret, favor, and recall information in a way that confirms or supports one's prior beliefs or values. People display this bias when they select information that supports their views, ignoring contrary information, or when they interpret ambiguous evidence as supporting their existing attitudes. The effect is strongest for desired outcomes, for emotionally charged issues, and for deeply entrenched beliefs.

<span class="mw-page-title-main">Experiment</span> Scientific procedure performed to validate a hypothesis

An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when a particular factor is manipulated. Experiments vary greatly in goal and scale but always rely on repeatable procedure and logical analysis of the results. There also exist natural experimental studies.

Empirical evidence is evidence obtained through sense experience or experimental procedure. It is of central importance to the sciences and plays a role in various other fields, like epistemology and law.

Hindsight bias, also known as the knew-it-all-along phenomenon or creeping determinism, is the common tendency for people to perceive past events as having been more predictable than they were.

<span class="mw-page-title-main">Sociology of scientific knowledge</span> Study of science as a social activity

The sociology of scientific knowledge (SSK) is the study of science as a social activity, especially dealing with "the social conditions and effects of science, and with the social structures and processes of scientific activity." The sociology of scientific ignorance (SSI) is complementary to the sociology of scientific knowledge. For comparison, the sociology of knowledge studies the impact of human knowledge and the prevailing ideas on societies and relations between knowledge and the social context within which it arises.

<span class="mw-page-title-main">Harry Collins</span> British sociologist of science (born 1943)

Harry Collins, FLSW, is a British sociologist of science at the School of Social Sciences, Cardiff University, Wales. In 2012 he was elected a Fellow of the British Academy. In 2013, he was elected a Fellow of the Learned Society of Wales.

Computational science, also known as scientific computing, technical computing or scientific computation (SC), is a division of science, and more specifically the Computer Sciences, which uses advanced computing capabilities to understand and solve complex physical problems. While this discussion typically extenuates into Visual Computation, this research field of study will typically include the following research categorizations.

Internal validity is the extent to which a piece of evidence supports a claim about cause and effect, within the context of a particular study. It is one of the most important properties of scientific studies and is an important concept in reasoning about evidence more generally. Internal validity is determined by how well a study can rule out alternative explanations for its findings. It contrasts with external validity, the extent to which results can justify conclusions about other contexts. Both internal and external validity can be described using qualitative or quantitative forms of causal notation.

<span class="mw-page-title-main">Scientific modelling</span> Scientific activity that produces models

Scientific modelling is an activity that produces models representing empirical objects, phenomena, and physical processes, to make a particular part or feature of the world easier to understand, define, quantify, visualize, or simulate. It requires selecting and identifying relevant aspects of a situation in the real world and then developing a model to replicate a system with those features. Different types of models may be used for different purposes, such as conceptual models to better understand, operational models to operationalize, mathematical models to quantify, computational models to simulate, and graphical models to visualize the subject.

<span class="mw-page-title-main">Objectivity (science)</span> Type of attempt to uncover truths

In science, objectivity refers to attempts to do higher quality research by eliminating personal biases, irrational emotions and false beliefs, while focusing mainly on proven facts and evidence. It is often linked to observation as part of the scientific method. It is thus related to the aim of testability and reproducibility. To be considered objective, the results of measurement must be communicated from person to person, and then demonstrated for third parties, as an advance in a collective understanding of the world. Such demonstrable knowledge has ordinarily conferred demonstrable powers of prediction or technology.

<span class="mw-page-title-main">Evidence</span> Material supporting an assertion

Evidence for a proposition is what supports the proposition. It is usually understood as an indication that the proposition is true. The exact definition and role of evidence vary across different fields. In epistemology, evidence is what justifies beliefs or what makes it rational to hold a certain doxastic attitude. For example, a perceptual experience of a tree may serve as evidence to justify the belief that there is a tree. In this role, evidence is usually understood as a private mental state. In phenomenology, evidence is limited to intuitive knowledge, often associated with the controversial assumption that it provides indubitable access to truth.

<span class="mw-page-title-main">Criticism of science</span> Critical observation of science

Criticism of science addresses problems within science in order to improve science as a whole and its role in society. Criticisms come from philosophy, from social movements like feminism, and from within science itself.

The decline effect may occur when scientific claims receive decreasing support over time. The term was first described by parapsychologist Joseph Banks Rhine in the 1930s to describe the disappearing of extrasensory perception (ESP) of psychic experiments conducted by Rhine over the course of study or time. In its more general term, Cronbach, in his review article of science "Beyond the two disciplines of scientific psychology" referred to the phenomenon as "generalizations decay." The term was once again used in a 2010 article by Jonah Lehrer published in The New Yorker.

Causal inference is the process of determining the independent, actual effect of a particular phenomenon that is a component of a larger system. The main difference between causal inference and inference of association is that causal inference analyzes the response of an effect variable when a cause of the effect variable is changed. The study of why things occur is called etiology, and can be described using the language of scientific causal notation. Causal inference is said to provide the evidence of causality theorized by causal reasoning.

References

  1. Collins, H. M. (1981). "Introduction: Stages in the Empirical Programme of Relativism". Social Studies of Science. 11 (1). Sage Publications, Ltd.: 3–10. ISSN   0306-3127.
  2. H.M. Collins (1981). "'Son of seven sexes', The Social Destruction of a Physical Phenomenon". Social Studies of Science. 11 (1): 33–62. doi:10.1177/030631278101100103. S2CID   145126667.
  3. Collins, H. M. (1985). Changing Order. London: SAGE Publications.
  4. 1 2 Koertge, Noretta (1998). A house built on sand : exposing postmodernist myths about science. Oxford University Press. pp.  151–165. ISBN   978-0195117264.
  5. B. Godin, Y. Gingras (2002). "The experimenters' regress: from skepticism to argumentation" (PDF). Studies in History and Philosophy of Science. 33 (1): 137–152. doi:10.1016/S0039-3681(01)00032-2.
  6. D. Kennefick (2000). "Star Crushing: Theoretical Practice and the Theoreticians' Regress". Social Studies of Science. 30 (1): 5–40. doi:10.1177/030631200030001001. S2CID   145568092.
  7. A. Gelfert (2011), "Scientific Models, Simulation, and the Experimenter's Regress", in Humphreys, Paul and Cyrille Imbert (ed.), Models, Simulations, and Representations, London: Routledge, pp. 145–167
  8. A. Tolk (2017), "Proceedings of the Spring Simulation Multi-Conference", Bias Ex Silico - Observations On Simulationist's Regress, San Diego, CA: Society for Modeling and Simulation, Inc.