Explosive booster

Last updated

An explosive booster is a sensitive explosive charge that acts as a bridge between a (relatively weak) conventional detonator and a low-sensitivity (but typically high-energy) explosive such as TNT. [1] By itself, the initiating detonator would not deliver sufficient energy to set off the low-sensitivity charge. However, it detonates the primary charge (the booster), which then delivers an explosive shockwave that is sufficient to detonate the secondary, main, high-energy charge.

Unlike C4 plastic explosive, not all explosives can be detonated simply by inserting a detonator and firing it.

An initiator such as a shock tube, cannon fuse, or even a conventional detonator does not deliver sufficient shock to detonate charges comprising TNT, Composition B, ANFO and many other high explosives. Therefore, some form of "booster" is required to amplify the energy released by the detonator so that the main charge will detonate.

At first, picric acid was used as a booster to detonate TNT, though it was superseded due to the inherent danger of picrate formation. Tetryl replaced picric acid because it is more stable, and was once a very popular chemical for booster charges, particularly during World War II. However, since then, tetryl has largely been replaced by other compositions, e.g. a small cylinder or pellet of phlegmatized RDX (e.g. CH-6 or Composition A-5) or PETN (slightly larger than the actual detonator) into which the detonator itself is inserted.

Note: booby traps and improvised explosive devices frequently use plastic explosive as the booster charge, for example, some C4 or Semtex stuffed into the empty fuze pocket of a 120mm mortar shell. This is because any standard detonator will initiate plastic explosive as is.

When encountered in connection with artillery shells or air dropped bombs, a booster charge is sometimes referred to as the "gaine", from French : gaine-relais. See detonators.

At a purely technical level, a sufficiently large detonator would initiate high explosives without the need for a booster charge. However, there are very good reasons why this method is never used. Firstly, there is a major safety issue, i.e. detonators are (like all primary explosives) much more sensitive to shock, heat, and friction than an explosive booster. Therefore, minimising the amount of primary explosive that users must store or carry greatly reduces the likelihood of serious accidents. An additional economic reason for using explosive booster charges is that chemical compounds used in detonators (e.g. lead styphnate) are comparatively expensive to produce and encapsulate when compared to the manufacturing costs of explosive boosters.

A common form for boosters is to cast the explosive material into a cylindrical shell made of cardboard or plastic; these are accordingly known as cast boosters.

Related Research Articles

<span class="mw-page-title-main">Explosive</span> Substance that can explode

An explosive is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An explosive charge is a measured quantity of explosive material, which may either be composed solely of one ingredient or be a mixture containing at least two substances.

<span class="mw-page-title-main">TNT</span> Impact-resistant high explosive

Trinitrotoluene, more commonly known as TNT, more specifically 2,4,6-trinitrotoluene, and by its preferred IUPAC name 2-methyl-1,3,5-trinitrobenzene, is a chemical compound with the formula C6H2(NO2)3CH3. TNT is occasionally used as a reagent in chemical synthesis, but it is best known as an explosive material with convenient handling properties. The explosive yield of TNT is considered to be the standard comparative convention of bombs and asteroid impacts. In chemistry, TNT is used to generate charge transfer salts.

<span class="mw-page-title-main">Pentaerythritol tetranitrate</span> Explosive chemical compound

Pentaerythritol tetranitrate (PETN), also known as PENT, pentyl, PENTA, TEN, corpent, or penthrite, is an explosive material. It is the nitrate ester of pentaerythritol, and is structurally very similar to nitroglycerin. Penta refers to the five carbon atoms of the neopentane skeleton. PETN is a very powerful explosive material with a relative effectiveness factor of 1.66. When mixed with a plasticizer, PETN forms a plastic explosive. Along with RDX it is the main ingredient of Semtex and C4.

<span class="mw-page-title-main">Tetryl</span> Chemical compound

2,4,6-Trinitrophenylmethylnitramine or tetryl (C7H5N5O8) is an explosive compound used to make detonators and explosive booster charges.

<span class="mw-page-title-main">Detonator</span> Small explosive device used to trigger a larger explosion

A detonator, sometimes called a blasting cap in the US, is a small sensitive device used to provoke a larger, more powerful but relatively insensitive secondary explosive of an explosive device used in commercial mining, excavation, demolition, etc.

<span class="mw-page-title-main">Percussion cap</span> Ignition source in a type of firearm mechanism

The percussion cap or percussion primer, introduced in the early 1820s, is a type of single-use percussion ignition device for muzzle loader firearm locks enabling them to fire reliably in any weather condition. Its invention gave rise to the cap lock mechanism or percussion lock system which used percussion caps struck by the hammer to set off the gunpowder charge in rifles and cap and ball firearms. Any firearm using a caplock mechanism is a percussion gun. Any long gun with a cap-lock mechanism and rifled barrel is a percussion rifle. Cap and ball describes cap-lock firearms discharging a single bore-diameter spherical bullet with each shot.

<span class="mw-page-title-main">C-4 (explosive)</span> Variety of plastic explosive

C-4 or Composition C-4 is a common variety of the plastic explosive family known as Composition C, which uses RDX as its explosive agent. C-4 is composed of explosives, plastic binder, plasticizer to make it malleable, and usually a marker or odorizing taggant chemical. C-4 has a texture similar to modelling clay and can be molded into any desired shape. C-4 is relatively insensitive and can be detonated only by the shock wave from a detonator or blasting cap.

<span class="mw-page-title-main">Shell (projectile)</span> Payload-carrying projectile

A shell, in a military context, is a projectile whose payload contains an explosive, incendiary, or other chemical filling. Originally it was called a bombshell, but "shell" has come to be unambiguous in a military context. A shell can hold a tracer.

<span class="mw-page-title-main">Exploding-bridgewire detonator</span> Detonator fired by electric current

The exploding-bridgewire detonator is a type of detonator used to initiate the detonation reaction in explosive materials, similar to a blasting cap because it is fired using an electric current. EBWs use a different physical mechanism than blasting caps, using more electricity delivered much more rapidly. Exploding with more precise timing after the electric current is applied, by the process of exploding wire method. This has led to their common use in nuclear weapons.

A triggering sequence, also called an explosive train or a firing train, is a sequence of events that culminates in the detonation of explosives. For safety reasons, most widely used high explosives are difficult to detonate. A primary explosive of higher sensitivity is used to trigger a uniform and predictable detonation of the main body of the explosive. Although the primary explosive itself is generally a more sensitive and expensive compound, it is only used in small quantities and in relatively safely packaged forms. By design there are low explosives and high explosives made such that the low explosives are highly sensitive and high explosives are comparatively insensitive. This not only affords inherent safety to the usage of explosives during handling and transport, but also necessitates an explosive triggering sequence or explosive train. The explosive triggering sequence or the explosive train essentially consists of an 'initiator', an 'intermediary' and the 'high explosive'.

<span class="mw-page-title-main">Detonating cord</span> Thin explosive tube

Detonating cord is a thin, flexible plastic tube usually filled with pentaerythritol tetranitrate. With the PETN exploding at a rate of approximately 6,400 m/s (21,000 ft/s), any common length of detonation cord appears to explode instantaneously. It is a high-speed fuse which explodes, rather than burns, and is suitable for detonating high explosives. The detonation velocity is sufficient to use it for synchronizing multiple charges to detonate almost simultaneously even if the charges are placed at different distances from the point of initiation. It is used to reliably and inexpensively chain together multiple explosive charges. Typical uses include mining, drilling, demolitions, and warfare.

<span class="mw-page-title-main">Firing pin</span> Part of the firing mechanism in a firearm

A firing pin or striker is a part of the firing mechanism of a firearm that impacts the primer in the base of a cartridge and causes it to fire. In firearms terminology, a striker is a particular type of firing pin where a compressed spring acts directly on the firing pin to provide the impact force rather than it being struck by a hammer.

Type 72 Non-Metallic is a Chinese circular, plastic bodied landmine which is designed to damage or destroy a vehicle by blast effect.

<span class="mw-page-title-main">Anti-personnel mine</span> Form of land mine designed for use against humans

An anti-personnel mine or anti-personnel landmine (APL) is a form of mine designed for use against humans, as opposed to an anti-tank mine, which target vehicles. APLs are classified into: blast mines and fragmentation mines; the latter may or may not be a bounding mine.

<span class="mw-page-title-main">PMN mine</span> Series of Soviet anti-personnel mines

The PMN series of blast anti-personnel mines were designed and manufactured in the Soviet Union. They are one of the most widely used and commonly found devices during demining operations. They are sometimes nicknamed "black widow" because of their dark casings.

<span class="mw-page-title-main">PMA-2 mine</span> Yugoslavian Anti-Personnel mine

The PMA-2 is a Yugoslavian blast antipersonnel mine. Sometimes referred to as the 'Pašteta', due to its superficial resemblance to a meat-pâté tin. The mine is constructed from dark green plastic, with a distinctive plunger which has six petals radiating from it.

In military munitions, a fuze is the part of the device that initiates function. In some applications, such as torpedoes, a fuze may be identified by function as the exploder. The relative complexity of even the earliest fuze designs can be seen in cutaway diagrams.

<span class="mw-page-title-main">Artillery fuze</span> Type of munition fuze used with artillery munitions

An artillery fuze or fuse is the type of munition fuze used with artillery munitions, typically projectiles fired by guns, howitzers and mortars. A fuze is a device that initiates an explosive function in a munition, most commonly causing it to detonate or release its contents, when its activation conditions are met. This action typically occurs a preset time after firing, or on physical contact with or detected proximity to the ground, a structure or other target. Fuze, a variant of fuse, is the official NATO spelling.

A shock tube detonator is a non-electric explosive fuze or initiator in the form of small-diameter hollow plastic tubing used to transport an initiating signal to an explosive by means of a shock wave traveling the length of the tube. Shock tube is used to convey a detonation signal to a detonator. Shock tube is a hollow extruded tube containing a thin layer of energetic material upon its inner diameter. Once it is initiated, the shock tube transfers a signal to a detonating output charge.

The 37×145mmR was a series of rimmed-case, fixed-ammunition cannon shells for use in the 37mm Browning M4 autocannon.

References

  1. Basil T. Fedoroff; Oliver E. Sheffield (January 1, 1962). "Booster". Encyclopedia of explosives and related items. Vol. 2. Picatinny Arsenal. pp. 243–246. LCCN   61-61759.