FGF-2 internal ribosome entry site (IRES)

Last updated
FGF-2 internal ribosome entry site (IRES)
RF00224.jpg
Predicted secondary structure and sequence conservation of IRES_FGF2
Identifiers
SymbolIRES_FGF2
Alt. SymbolsIRES_FGF; FGF_IRES
Rfam RF00224
Other data
RNA type Cis-reg; IRES
Domain(s) Eukaryota
GO 0043022
SO 0000243
PDB structures PDBe

The FGF-2 internal ribosome entry site is an RNA element present in the 5' UTR of the mRNA of fibroblast growth factor-2. It has been found that the FGF-2 internal ribosome entry site (IRES) activity is strictly controlled and highly tissue specific. It is thought that translational IRES dependent activation of FGF-2 plays a vital role in embryogenesis and in the adult brain [1]. When expressed the fibroblast growth factor 2 FGF-2 protein plays a pivotal role in cell proliferation, differentiation and survival as well as being involved in wound-healing [1,2].

Cis-regulatory elements (CREs) are regions of non-coding DNA which regulate the transcription of neighboring genes. CREs are vital components of genetic regulatory networks, which in turn control morphogenesis, the development of anatomy, and other aspects of embryonic development, studied in evolutionary developmental biology.

The fibroblast growth factors (FGF) are a family of cell signalling proteins that are involved in a wide variety of processes, most notably as crucial elements for normal development. Any irregularities in their function lead to a range of developmental defects. These growth factors generally act as systemic or locally circulating molecules of extracellular origin that activate cell surface receptors. A defining property of FGFs is that they bind to heparin and heparan sulfate, thus some of them are found to be sequestered in the extracellular matrix of tissues that contains heparan sulfate proteoglycans and they are released locally upon injury or tissue remodeling.

An internal ribosome entry site, abbreviated IRES, is an RNA element that allows for translation initiation in a cap-independent manner, as part of the greater process of protein synthesis. In eukaryotic translation, initiation typically occurs at the 5' end of mRNA molecules, since 5' cap recognition is required for the assembly of the initiation complex. The location for IRES elements is often in the 5'UTR, but can also occur elsewhere in mRNAs.

Contents

Related Research Articles

Angiogenesis blood vessel formation when new vessels emerge from existing vessels

Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature by processes of sprouting and splitting. Vasculogenesis is the embryonic formation of endothelial cells from mesoderm cell precursors, and from neovascularization, although discussions are not always precise. The first vessels in the developing embryo form through vasculogenesis, after which angiogenesis is responsible for most, if not all, blood vessel growth during development and in disease.

Basic fibroblast growth factor protein-coding gene in the species Homo sapiens

FGF2, also known as basic fibroblast growth factor (bFGF) and FGF-β, is a growth factor and signaling protein encoded by the FGF2 gene. It is synthesized primarily as a 155 amino acid polypeptide, resulting in an 18 kDa protein. However, there are four alternate start codons which provide N-terminal extensions of 41, 46, 55, or 133 amino acids, resulting in proteins of 22 kDa, 22.5 kDa, 24 kDa and 34 kDa, respectively. Generally, the 155 aa/18 kDa low molecular weight (LMW) form is considered cytoplasmic and can be secreted from the cell, whereas the high molecular weight (HMW) forms are directed to the cell's nucleus.

FGF1 protein-coding gene in the species Homo sapiens

FGF1, also known as acidic fibroblast growth factor (aFGF), is a growth factor and signaling protein encoded by the FGF1 gene. It is synthesized as a 155 amino acid polypeptide, whose mature form is a non-glycosylated 17-18 kDa protein. Fibroblast growth factor protein was first purified in 1975, but soon afterwards others using different conditions isolated acidic FGF, Heparin-binding growth factor-1, and Endothelial cell growth factor-1. Gene sequencing revealed that this group was actually the same growth factor and that FGF1 was a member of a family of FGF proteins.

FGF-1 internal ribosome entry site (IRES)

The FGF-1 internal ribosome entry site (IRES) is an RNA element present in the 5' UTR of the mRNA of fibroblast growth factor-1 and allows cap-independent translation. It is thought that FGF-1 internal ribosome entry site (IRES) activity is strictly controlled and highly tissue specific.

Insulin-like growth factor II IRES

The insulin-like growth factor II (IGF-II) internal ribosome entry site IRES is found in the 5' UTR of IGF-II leader 2 mRNA. This RNA element allows cap-independent translation of the mRNA and it is thought that this family may facilitate a continuous IGF-II production in rapidly dividing cells during development. Ribosomal scanning on human insulin-like growth factor II (IGF-II) is hard to comprehend due to one open reading frame and the ability for the hormone to fold into a stable structure.

Vascular endothelial growth factor (VEGF) IRES A

This family represents the vascular endothelial growth factor (VEGF) internal ribosome entry site (IRES) A. VEGF is an endothelial cell mitogen with many crucial functions such as embryogenic development and wound healing. The 5' UTR of VEGF mRNA contains two IRES elements which are able to promote efficient translation at the AUG start codon, this family represents IRES A.

FGF7 protein-coding gene in the species Homo sapiens

Keratinocyte growth factor is a protein that in humans is encoded by the FGF7 gene.

FGF10 protein-coding gene in the species Homo sapiens

Fibroblast growth factor 10 is a protein that in humans is encoded by the FGF10 gene.

FGF8 protein-coding gene in the species Homo sapiens

Fibroblast growth factor 8 is a protein that in humans is encoded by the FGF8 gene.

FGF9 protein-coding gene in the species Homo sapiens

Glia-activating factor is a protein that in humans is encoded by the FGF9 gene.

FGF4 protein-coding gene in the species Homo sapiens

Fibroblast growth factor 4 is a protein that in humans is encoded by the FGF4 gene.

FGF5 protein-coding gene in the species Homo sapiens

Fibroblast growth factor 5 is a protein that in humans is encoded by the FGF5 gene.

FGF18 protein-coding gene in the species Homo sapiens

Fibroblast growth factor 18 is a protein that in humans is encoded by the FGF18 gene.

FGF13 protein-coding gene in the species Homo sapiens

Fibroblast growth factor 13 is a protein that in humans is encoded by the FGF13 gene.

FGF6 protein-coding gene in the species Homo sapiens

Fibroblast growth factor 6 is a protein that in humans is encoded by the FGF6 gene.

FGF21 protein-coding gene in the species Homo sapiens

Fibroblast growth factor 21 is a protein that in mammals is encoded by the FGF21 gene. The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family and specifically a member of the endocrine subfamily which includes FGF23 and FGF15/19. FGF21 is the primary endogenous agonist of the FGF21 receptor, which is composed of the co-receptors FGF receptor 1 and β-Klotho.

Eukaryotic translation initiation factor 4 G (eIF4G) is a protein involved in eukaryotic translation initiation and is a component of the eIF4F cap-binding complex. Orthologs of eIF4G have been studied in multiple species, including humans, yeast, and wheat. However, eIF4G is exclusively found in domain Eukarya, and not in domains Bacteria or Archaea, which do not have capped mRNA. As such, eIF4G structure and function may vary between species, although the human eIF4G 1 has been the focus of extensive studies.

Fibroblast growth factor 22 is a protein which in humans is encoded by the FGF22 gene.

References

    Further reading

    Digital object identifier Character string used as a permanent identifier for a digital object, in a format controlled by the International DOI Foundation

    In computing, a digital object identifier (DOI) is a persistent identifier or handle used to identify objects uniquely, standardized by the International Organization for Standardization (ISO). An implementation of the Handle System, DOIs are in wide use mainly to identify academic, professional, and government information, such as journal articles, research reports and data sets, and official publications though they also have been used to identify other types of information resources, such as commercial videos.

    PubMed Central (PMC) is a free digital repository that archives publicly accessible full-text scholarly articles that have been published within the biomedical and life sciences journal literature. As one of the major research databases within the suite of resources that have been developed by the National Center for Biotechnology Information (NCBI), PubMed Central is much more than just a document repository. Submissions into PMC undergo an indexing and formatting procedure which results in enhanced metadata, medical ontology, and unique identifiers which all enrich the XML structured data for each article on deposit. Content within PMC can easily be interlinked to many other NCBI databases and accessed via Entrez search and retrieval systems, further enhancing the public's ability to freely discover, read and build upon this portfolio of biomedical knowledge.

    Rfam is a database containing information about non-coding RNA (ncRNA) families and other structured RNA elements. It is an annotated, open access database originally developed at the Wellcome Trust Sanger Institute in collaboration with Janelia Farm, and currently hosted at the European Bioinformatics Institute. Rfam is designed to be similar to the Pfam database for annotating protein families.