Fluid conductance

Last updated

Fluid conductance is a measure of how effectively fluids are transported through a medium or a region. The concept is particularly useful in cases in which the amount of fluid transported is linearly related to whatever is driving the transport.

For example, the concept is useful in the flow of liquids through permeable media, especially in hydrology in relation to river and lake bottoms. In this case, it is an application of intrinsic permeability to a unit of material with a defined area and thickness, and the magnitude of conductance affects the rate of groundwater recharge or interaction with groundwater. This parameter is often used in such computer modelling codes as MODFLOW.

Hydrology The science of the movement, distribution, and quality of water on Earth and other planets

Hydrology is the scientific study of the movement, distribution, and quality of water on Earth and other planets, including the water cycle, water resources and environmental watershed sustainability. A practitioner of hydrology is a hydrologist, working within the fields of earth or environmental science, physical geography, geology or civil and environmental engineering. Using various analytical methods and scientific techniques, they collect and analyze data to help solve water related problems such as environmental preservation, natural disasters, and water management.

River Natural flowing watercourse

A river is a natural flowing watercourse, usually freshwater, flowing towards an ocean, sea, lake or another river. In some cases a river flows into the ground and becomes dry at the end of its course without reaching another body of water. Small rivers can be referred to using names such as stream, creek, brook, rivulet, and rill. There are no official definitions for the generic term river as applied to geographic features, although in some countries or communities a stream is defined by its size. Many names for small rivers are specific to geographic location; examples are "run" in some parts of the United States, "burn" in Scotland and northeast England, and "beck" in northern England. Sometimes a river is defined as being larger than a creek, but not always: the language is vague.

Lake A body of relatively still water, in a basin surrounded by land

A lake is an area filled with water, localized in a basin, that is surrounded by land, apart from any river or other outlet that serves to feed or drain the lake. Lakes lie on land and are not part of the ocean, and therefore are distinct from lagoons, and are also larger and deeper than ponds, though there are no official or scientific definitions. Lakes can be contrasted with rivers or streams, which are usually flowing. Most lakes are fed and drained by rivers and streams.

Conductance is also a useful concept in the design and study of vacuum systems. Such systems consist of vacuum chambers and the various flow passages and pumps that connect and maintain them. These systems are common in physical science laboratories and many laboratory apparatus as well, such as mass spectrometers. Typically, the pressures inside these devices are low enough that the gas inside them is rarefied, meaning here that the mean free path of constituent atoms and molecules is a non-negligible fraction of the dimensions of orifices and passageways. Under those conditions, the total mass flow through an orifice or conduit is typically linearly proportional to the pressure drop, so that it is convenient to quantify mass flow in terms of the fluid conductance of the constituent components.

Example from hydrology

For example, the conductance of water through a stream-bed is:

Water chemical compound

Water is a transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's streams, lakes, and oceans, and the fluids of most living organisms. It is vital for all known forms of life, even though it provides no calories or organic nutrients. Its chemical formula is H2O, meaning that each of its molecules contains one oxygen and two hydrogen atoms, connected by covalent bonds. Water is the name of the liquid state of H2O at standard ambient temperature and pressure. It forms precipitation in the form of rain and aerosols in the form of fog. Clouds are formed from suspended droplets of water and ice, its solid state. When finely divided, crystalline ice may precipitate in the form of snow. The gaseous state of water is steam or water vapor. Water moves continually through the water cycle of evaporation, transpiration (evapotranspiration), condensation, precipitation, and runoff, usually reaching the sea.

where

is the conductance of the stream-bed ([L2T−1]; m2s−1 or ft2day−1)
is the hydraulic conductivity of the stream-bed materials([LT−1]; m·s−1 or ft·day−1];
is the area of the stream-bed ([L2]; m2 or ft2)
is the thickness of the stream-bed sediments ([L]; m or ft)

The volumetric discharge through the stream-bed can be calculated if the difference in hydraulic head is known:

In hydrology, discharge is the volumetric flow rate of water that is transported through a given cross-sectional area. It includes any suspended solids (e.g. sediment), dissolved chemicals (e.g. CaCO3(aq)), or biologic material (e.g. diatoms) in addition to the water itself.

Hydraulic head specific measurement of liquid pressure above a geodetic datum

Hydraulic head or piezometric head is a specific measurement of liquid pressure above a vertical datum.

where

is the volumetric discharge through the stream-bed ([L3T−1]; m3s−1 or ft3day−1)
is the hydraulic head of the river (elevation stage)
is the hydraulic head of the aquifer below the stream-bed ([L]; m or ft)

Example from vacuum technology

The defining equation for conductance in vacuum technology is

Here

is the total throughput, usually by convention not measured as a mass throughput but rather as a pressure throughput and having units of pressure times volume per second,
and are the upstream and downstream pressures,
is the conductance, having units of volume/time, which are the same units as pumping speed for a vacuum pump.

This definition proves useful in vacuum systems because under conditions of rarefied gas flow, the conductance of various structures is usually constant, and the overall conductance of a complex network of pipes, orifices and other conveyances can be found in direct analogy to a resistive electrical circuit.

For example, the conductance of a simple orifice is

liters/sec, where is measured in centimeters.

Related Research Articles

Pelton wheel

A Pelton wheel is an impulse-type water turbine invented by Lester Allan Pelton in the 1870s. The Pelton wheel extracts energy from the impulse of moving water, as opposed to water's dead weight like the traditional overshot water wheel. Many earlier variations of impulse turbines existed, but they were less efficient than Pelton's design. Water leaving those wheels typically still had high speed, carrying away much of the dynamic energy brought to the wheels. Pelton's paddle geometry was designed so that when the rim ran at half the speed of the water jet, the water left the wheel with very little speed; thus his design extracted almost all of the water's impulse energy—which allowed for a very efficient turbine.

Flow measurement is the quantification of bulk fluid movement. Flow can be measured in a variety of ways. The common types of flowmeters that find industrial application can be listed as below:

Effusion process of a gas escaping through a small hole

In physics and chemistry, effusion is the process in which a gas escapes from a container through a hole of diameter considerably smaller than the mean free path of the molecules. Such a hole is often described as a pinhole and the escape of the gas is due to the pressure difference between the container and the exterior. Under these conditions, essentially all molecules which arrive at the hole continue and pass through the hole, since collisions between molecules in the region of the hole are negligible. Conversely, when the diameter is larger than the mean free path of the gas, flow obeys the Sampson flow law.

Volumetric flow rate volume of fluid which passes per unit time

In physics and engineering, in particular fluid dynamics and hydrometry, the volumetric flow rate is the volume of fluid which passes per unit time; usually represented by the symbol Q. The SI unit is m3/s. Another unit used is sccm.

Venturi effect physical effect

The Venturi effect is the reduction in fluid pressure that results when a fluid flows through a constricted section of a pipe. The Venturi effect is named after Giovanni Battista Venturi (1746–1822), an Italian physicist.

Injector type of pump

A steam injector is typically used to deliver cold water to a boiler against its own pressure using its own live or exhaust steam, replacing any mechanical pump. This was the purpose for which it was originally invented in 1858 by Henri Giffard. Its operation was from the start intriguing since it seemed paradoxical, almost like perpetual motion, but its operation was later explained using thermodynamics. Other types of injector may use other pressurised motive fluids such as air.

An orifice plate is a device used for measuring flow rate, for reducing pressure or for restricting flow. Either a volumetric or mass flow rate may be determined, depending on the calculation associated with the orifice plate. It uses the same principle as a Venturi nozzle, namely Bernoulli's principle which states that there is a relationship between the pressure of the fluid and the velocity of the fluid. When the velocity increases, the pressure decreases and vice versa.

Centrifugal pump

Centrifugal pumps are a sub-class of dynamic axisymmetric work-absorbing turbomachinery. Centrifugal pumps are used to transport fluids by the conversion of rotational kinetic energy to the hydrodynamic energy of the fluid flow. The rotational energy typically comes from an engine or electric motor. The fluid enters the pump impeller along or near to the rotating axis and is accelerated by the impeller, flowing radially outward into a diffuser or volute chamber (casing), from which it exits.

The affinity laws for pumps/fans are used in hydraulics, hydronics and/or HVAC to express the relationship between variables involved in pump or fan performance and power. They apply to pumps, fans, and hydraulic turbines. In these rotary implements, the affinity laws apply both to centrifugal and axial flows.

Choked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the fluid velocity.

Hydraulic pump

Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy. It generates flow with enough power to overcome pressure induced by the load at the pump outlet. When a hydraulic pump operates, it creates a vacuum at the pump inlet, which forces liquid from the reservoir into the inlet line to the pump and by mechanical action delivers this liquid to the pump outlet and forces it into the hydraulic system. Hydrostatic pumps are positive displacement pumps while hydrodynamic pumps can be fixed displacement pumps, in which the displacement cannot be adjusted, or variable displacement pumps, which have a more complicated construction that allows the displacement to be adjusted. Hydrodynamic pumps are more frequent in day-to-day life. Hydrostatic pumps of various types all work on the principle of Pascal's law.

Airwatt or air watt is a measurement unit of the effectiveness of vacuum cleaners which refers to airflow and the amount of power (watts) a vacuum cleaner produces and uses. It can also be referred to as a measurement of the energy per unit time of the air flowing through an opening, which is related to the energy that electricity carries through the power cable (wattage).

Pressure exchanger

A pressure exchanger transfers pressure energy from a high pressure fluid stream to a low pressure fluid stream. Many industrial processes operate at elevated pressures and have high pressure waste streams. One way of providing a high pressure fluid to such a process is to transfer the waste pressure to a low pressure stream using a pressure exchanger.

In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Poiseuille in 1840–41 and 1846.

Inertance is a measure of the pressure difference in a fluid required to cause a unit change in the rate of change of volumetric flow-rate with time. The base SI units of inertance are kg m−4 or Pa m−3 s2 and the usual symbol is I.

The depth–slope product is used to calculate the shear stress at the bed of an open channel containing fluid that is undergoing steady, uniform flow. It is widely used in river engineering, stream restoration, sedimentology, and fluvial geomorphology. It is the product of the water depth and the mean bed slope, along with the acceleration due to gravity and density of the fluid.

In a nozzle or other constriction, the discharge coefficient is the ratio of the actual discharge to the theoretical discharge, i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.

Sampson flow is defined as fluid flow through an infinitely thin orifice in the viscous flow regime for low Reynolds number. It is derived from an analytical solution to the Navier-Stokes equations. The below equation can be used to calculate the total volumetric flowrate through such an orifice:

Specific Pump Power (SPP) is a metric in fluid dynamics that quantifies the energy-efficiency of pump systems. It is a measure of the electric power that is needed to operate a pump, relative to the volume flow rate. It is not constant for a given pump, but changes with both flow rate and pump pressure. This term 'SPP' is adapted from the established metric Specific fan power (SFP) for fans (blowers). It is commonly used when measuring the energy efficiency of buildings.