In science and engineering, hydraulic conductivity (K, in SI units of meters per second), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fracture network. [1] It depends on the intrinsic permeability (k, unit: m2) of the material, the degree of saturation, and on the density and viscosity of the fluid. Saturated hydraulic conductivity, Ksat, describes water movement through saturated media. By definition, hydraulic conductivity is the ratio of volume flux to hydraulic gradient yielding a quantitative measure of a saturated soil's ability to transmit water when subjected to a hydraulic gradient.
There are two broad approaches for determining hydraulic conductivity:
The experimental approach is broadly classified into:
The small-scale field tests are further subdivided into:
The methods of determining hydraulic conductivity and other hydraulic properties are investigated by numerous researchers and include additional empirical approaches. [2]
Allen Hazen derived an empirical formula for approximating hydraulic conductivity from grain-size analyses:
where
A pedotransfer function (PTF) is a specialized empirical estimation method, used primarily in the soil sciences, but increasingly used in hydrogeology. [3] There are many different PTF methods, however, they all attempt to determine soil properties, such as hydraulic conductivity, given several measured soil properties, such as soil particle size, and bulk density.
There are relatively simple and inexpensive laboratory tests that may be run to determine the hydraulic conductivity of a soil: constant-head method and falling-head method.
The constant-head method is typically used on granular soil. This procedure allows water to move through the soil under a steady state head condition while the volume of water flowing through the soil specimen is measured over a period of time. By knowing the volume ΔV of water measured in a time Δt, over a specimen of length L and cross-sectional area A, as well as the head h, the hydraulic conductivity (K) can be derived by simply rearranging Darcy's law:
Proof: Darcy's law states that the volumetric flow depends on the pressure differential ΔP between the two sides of the sample, the permeability k and the viscosity μ as: [4]
In a constant head experiment, the head (difference between two heights) defines an excess water mass, ρAh, where ρ is the density of water. This mass weighs down on the side it is on, creating a pressure differential of ΔP = ρgh, where g is the gravitational acceleration. Plugging this directly into the above gives
If the hydraulic conductivity is defined to be related to the hydraulic permeability as
this gives the result.
In the falling-head method, the soil sample is first saturated under a specific head condition. The water is then allowed to flow through the soil without adding any water, so the pressure head declines as water passes through the specimen. The advantage to the falling-head method is that it can be used for both fine-grained and coarse-grained soils. . [5] If the head drops from hi to hf in a time Δt, then the hydraulic conductivity is equal to
Proof: As above, Darcy's law reads
The decrease in volume is related to the falling head by ΔV = ΔhA. Plugging this relationship into the above, and taking the limit as Δt → 0, the differential equation
has the solution
Plugging in and rearranging gives the result.
In compare to laboratory method, field methods gives the most reliable information about the permeability of soil with minimum disturbances. In laboratory methods, the degree of disturbances affect the reliability of value of permeability of the soil.
Pumping test is the most reliable method to calculate the coefficient of permeability of a soil. This test is further classified into Pumping in test and pumping out test.
There are also in-situ methods for measuring the hydraulic conductivity in the field.
When the water table is shallow, the augerhole method, a slug test, can be used for determining the hydraulic conductivity below the water table.
The method was developed by Hooghoudt (1934) [6] in The Netherlands and introduced in the US by Van Bavel en Kirkham (1948). [7]
The method uses the following steps:
where:
where:
The picture shows a large variation of K-values measured with the augerhole method in an area of 100 ha. [9] The ratio between the highest and lowest values is 25. The cumulative frequency distribution is lognormal and was made with the CumFreq program.
The transmissivity is a measure of how much water can be transmitted horizontally, such as to a pumping well.
An aquifer may consist of n soil layers. The transmissivity Ti of a horizontal flow for the ith soil layer with a saturated thickness di and horizontal hydraulic conductivity Ki is:
Transmissivity is directly proportional to horizontal hydraulic conductivity Ki and thickness di. Expressing Ki in m/day and di in m, the transmissivity Ti is found in units m2/day.
The total transmissivity Tt of the aquifer is the sum of every layer's transmissivity: [8]
The apparent horizontal hydraulic conductivity KA of the aquifer is:
where Dt, the total thickness of the aquifer, is the sum of each layer's individual thickness:
The transmissivity of an aquifer can be determined from pumping tests. [10]
Influence of the water table
When a soil layer is above the water table, it is not saturated and does not contribute to the transmissivity. When the soil layer is entirely below the water table, its saturated thickness corresponds to the thickness of the soil layer itself. When the water table is inside a soil layer, the saturated thickness corresponds to the distance of the water table to the bottom of the layer. As the water table may behave dynamically, this thickness may change from place to place or from time to time, so that the transmissivity may vary accordingly.
In a semi-confined aquifer, the water table is found within a soil layer with a negligibly small transmissivity, so that changes of the total transmissivity (Dt) resulting from changes in the level of the water table are negligibly small.
When pumping water from an unconfined aquifer, where the water table is inside a soil layer with a significant transmissivity, the water table may be drawn down whereby the transmissivity reduces and the flow of water to the well diminishes.
The resistance to vertical flow (Ri) of the ith soil layer with a saturated thickness di and vertical hydraulic conductivity Kvi is:
Expressing Kvi in m/day and di in m, the resistance (Ri) is expressed in days.
The total resistance (Rt) of the aquifer is the sum of each layer's resistance: [8]
The apparent vertical hydraulic conductivity (KvA) of the aquifer is:
where Dt is the total thickness of the aquifer:
The resistance plays a role in aquifers where a sequence of layers occurs with varying horizontal permeability so that horizontal flow is found mainly in the layers with high horizontal permeability while the layers with low horizontal permeability transmit the water mainly in a vertical sense.
When the horizontal and vertical hydraulic conductivity ( and ) of the soil layer differ considerably, the layer is said to be anisotropic with respect to hydraulic conductivity.
When the apparent horizontal and vertical hydraulic conductivity ( and ) differ considerably, the aquifer is said to be anisotropic with respect to hydraulic conductivity.
An aquifer is called semi-confined when a saturated layer with a relatively small horizontal hydraulic conductivity (the semi-confining layer or aquitard) overlies a layer with a relatively high horizontal hydraulic conductivity so that the flow of groundwater in the first layer is mainly vertical and in the second layer mainly horizontal.
The resistance of a semi-confining top layer of an aquifer can be determined from pumping tests. [10]
When calculating flow to drains [11] or to a well field [12] in an aquifer with the aim to control the water table, the anisotropy is to be taken into account, otherwise the result may be erroneous.
Because of their high porosity and permeability, sand and gravel aquifers have higher hydraulic conductivity than clay or unfractured granite aquifers. Sand or gravel aquifers would thus be easier to extract water from (e.g., using a pumping well) because of their high transmissivity, compared to clay or unfractured bedrock aquifers.
Hydraulic conductivity has units with dimensions of length per time (e.g., m/s, ft/day and (gal/day)/ft² ); transmissivity then has units with dimensions of length squared per time. The following table gives some typical ranges (illustrating the many orders of magnitude which are likely) for K values.
Hydraulic conductivity (K) is one of the most complex and important of the properties of aquifers in hydrogeology as the values found in nature:
Table of saturated hydraulic conductivity (K) values found in nature
Values are for typical fresh groundwater conditions — using standard values of viscosity and specific gravity for water at 20 °C and 1 atm. See the similar table derived from the same source for intrinsic permeability values. [13]
K (cm/s) | 10² | 101 | 100=1 | 10−1 | 10−2 | 10−3 | 10−4 | 10−5 | 10−6 | 10−7 | 10−8 | 10−9 | 10−10 |
K (ft/day) | 105 | 10,000 | 1,000 | 100 | 10 | 1 | 0.1 | 0.01 | 0.001 | 0.0001 | 10−5 | 10−6 | 10−7 |
Relative Permeability | Pervious | Semi-Pervious | Impervious | ||||||||||
Aquifer | Good | Poor | None | ||||||||||
Unconsolidated Sand & Gravel | Well Sorted Gravel | Well Sorted Sand or Sand & Gravel | Very Fine Sand, Silt, Loess, Loam | ||||||||||
Unconsolidated Clay & Organic | Peat | Layered Clay | Fat / Unweathered Clay | ||||||||||
Consolidated Rocks | Highly Fractured Rocks | Oil Reservoir Rocks | Fresh Sandstone | Fresh Limestone, Dolomite | Fresh Granite |
Source: modified from Bear, 1972
Soil Type | Liquid Limit, LL (%) | Void Ratio at Liquid Limit, (%) | Hydraulic conductivity, cm/s |
---|---|---|---|
Bentonite | 330 | 9.24 | 1,28 |
Bentonite sand | 215 | 5,91 | 2,65 |
Natural marine soil | 106 | 2,798 | 2,56 |
Air-dried marine soil | 84 | 2,234 | 2,42 |
Open-dried marine soil | 60 | 1,644 | 2,63 |
Brown soil | 62 | 1,674 | 2,83 |
An aquifer is an underground layer of water-bearing material, consisting of permeable or fractured rock, or of unconsolidated materials. Aquifers vary greatly in their characteristics. The study of water flow in aquifers and the characterization of aquifers is called hydrogeology. Related terms include aquitard, which is a bed of low permeability along an aquifer, and aquiclude, which is a solid, impermeable area underlying or overlying an aquifer, the pressure of which could lead to the formation of a confined aquifer. The classification of aquifers is as follows: Saturated versus unsaturated; aquifers versus aquitards; confined versus unconfined; isotropic versus anisotropic; porous, karst, or fractured; transboundary aquifer.
Permeability in fluid mechanics and the Earth sciences is a measure of the ability of a porous material to allow fluids to pass through it.
Darcy's law is an equation that describes the flow of a fluid through a porous medium. The law was formulated by Henry Darcy based on results of experiments on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences. It is analogous to Ohm's law in electrostatics, linearly relating the volume flow rate of the fluid to the hydraulic head difference via the hydraulic conductivity.
In hydrogeology, an aquifer test is conducted to evaluate an aquifer by "stimulating" the aquifer through constant pumping, and observing the aquifer's "response" (drawdown) in observation wells. Aquifer testing is a common tool that hydrogeologists use to characterize a system of aquifers, aquitards and flow system boundaries.
Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, hydrology and soil physics.
In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat. It is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient has SI units in watts per square meter per kelvin (W/m2/K).
In the field of hydrogeology, storage properties are physical properties that characterize the capacity of an aquifer to release groundwater. These properties are storativity (S), specific storage (Ss) and specific yield (Sy). According to Groundwater, by Freeze and Cherry (1979), specific storage, [m−1], of a saturated aquifer is defined as the volume of water that a unit volume of the aquifer releases from storage under a unit decline in hydraulic head.
Used in hydrogeology, the groundwater flow equation is the mathematical relationship which is used to describe the flow of groundwater through an aquifer. The transient flow of groundwater is described by a form of the diffusion equation, similar to that used in heat transfer to describe the flow of heat in a solid. The steady-state flow of groundwater is described by a form of the Laplace equation, which is a form of potential flow and has analogs in numerous fields.
Infiltration is the process by which water on the ground surface enters the soil. It is commonly used in both hydrology and soil sciences. The infiltration capacity is defined as the maximum rate of infiltration. It is most often measured in meters per day but can also be measured in other units of distance over time if necessary. The infiltration capacity decreases as the soil moisture content of soils surface layers increases. If the precipitation rate exceeds the infiltration rate, runoff will usually occur unless there is some physical barrier.
MODFLOW is the U.S. Geological Survey modular finite-difference flow model, which is a computer code that solves the groundwater flow equation. The program is used by hydrogeologists to simulate the flow of groundwater through aquifers. The source code is free public domain software, written primarily in Fortran, and can compile and run on Microsoft Windows or Unix-like operating systems.
Soil consolidation refers to the mechanical process by which soil changes volume gradually in response to a change in pressure. This happens because soil is a two-phase material, comprising soil grains and pore fluid, usually groundwater. When soil saturated with water is subjected to an increase in pressure, the high volumetric stiffness of water compared to the soil matrix means that the water initially absorbs all the change in pressure without changing volume, creating excess pore water pressure. As water diffuses away from regions of high pressure due to seepage, the soil matrix gradually takes up the pressure change and shrinks in volume. The theoretical framework of consolidation is therefore closely related to the concept of effective stress, and hydraulic conductivity. The early theoretical modern models were proposed one century ago, according to two different approaches, by Karl Terzaghi and Paul Fillunger. The Terzaghi’s model is currently the most utilized in engineering practice and is based on the diffusion equation.
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo A. Richards who published the equation in 1931. It is a quasilinear partial differential equation; its analytical solution is often limited to specific initial and boundary conditions. Proof of the existence and uniqueness of solution was given only in 1983 by Alt and Luckhaus. The equation is based on Darcy-Buckingham law representing flow in porous media under variably saturated conditions, which is stated as
Groundwater models are computer models of groundwater flow systems, and are used by hydrologists and hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions.
Well drainage means drainage of agricultural lands by wells. Agricultural land is drained by pumped wells to improve the soils by controlling water table levels and soil salinity.
SahysMod is a computer program for the prediction of the salinity of soil moisture, groundwater and drainage water, the depth of the watertable, and the drain discharge in irrigated agricultural lands, using different hydrogeologic and aquifer conditions, varying water management options, including the use of ground water for irrigation, and several crop rotation schedules, whereby the spatial variations are accounted for through a network of polygons.
ZOOMQ3D is a numerical finite-difference model, which simulates groundwater flow in aquifers. The program is used by hydrogeologists to investigate groundwater resources and to make predictions about possible future changes in their quantity and quality. The code is written in C++, an object-oriented programming language and can compile and run on Windows and Unix operating systems.
In hydrology, a lens, also called freshwater lens or Ghyben-Herzberg lens, is a convex-shaped layer of fresh groundwater that floats above the denser saltwater and is usually found on small coral or limestone islands and atolls. This aquifer of fresh water is recharged through precipitation that infiltrates the top layer of soil and percolates downward until it reaches the saturated zone. The recharge rate of the lens can be summarized by the following equation:
A number of factors affect the permeability of soils, from particle size, impurities in the water, void ratio, the degree of saturation, and adsorbed water, to entrapped air and organic material.
The finite water-content vadose zone flux method represents a one-dimensional alternative to the numerical solution of Richards' equation for simulating the movement of water in unsaturated soils. The finite water-content method solves the advection-like term of the Soil Moisture Velocity Equation, which is an ordinary differential equation alternative to the Richards partial differential equation. The Richards equation is difficult to approximate in general because it does not have a closed-form analytical solution except in a few cases. The finite water-content method, is perhaps the first generic replacement for the numerical solution of the Richards' equation. The finite water-content solution has several advantages over the Richards equation solution. First, as an ordinary differential equation it is explicit, guaranteed to converge and computationally inexpensive to solve. Second, using a finite volume solution methodology it is guaranteed to conserve mass. The finite water content method readily simulates sharp wetting fronts, something that the Richards solution struggles with. The main limiting assumption required to use the finite water-content method is that the soil be homogeneous in layers.
Bioclogging or biological clogging is the clogging of pore space in soil by microbial biomass; their body and their byproducts such as extracellular polymeric substance (EPS). The microbial biomass blocks the pathway of water in the pore space, forming a certain thickness of the impermeable layer in the soil, and it reduces the rate of infiltration of water remarkably.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)