S wave

Last updated
Onde cisaillement impulsion 1d 30 petit.gif
Plane shear wave
Ondes cisaillement 2d 20 petit.gif
Propagation of a spherical S wave in a 2d grid (empirical model)

In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because they move through the body of an object, unlike surface waves. [1]

Contents

S waves are transverse waves, meaning that the direction of particle movement of an S wave is perpendicular to the direction of wave propagation, and the main restoring force comes from shear stress. [2] Therefore, S waves cannot propagate in liquids [3] with zero (or very low) viscosity; however, they may propagate in liquids with high viscosity. [4] [5]

The name secondary wave comes from the fact that they are the second type of wave to be detected by an earthquake seismograph, after the compressional primary wave, or P wave, because S waves travel more slowly in solids. Unlike P waves, S waves cannot travel through the molten outer core of the Earth, and this causes a shadow zone for S waves opposite to their origin. They can still propagate through the solid inner core: when a P wave strikes the boundary of molten and solid cores at an oblique angle, S waves will form and propagate in the solid medium. When these S waves hit the boundary again at an oblique angle, they will in turn create P waves that propagate through the liquid medium. This property allows seismologists to determine some physical properties of the Earth's inner core. [6]

History

In 1830, the mathematician Siméon Denis Poisson presented to the French Academy of Sciences an essay ("memoir") with a theory of the propagation of elastic waves in solids. In his memoir, he states that an earthquake would produce two different waves: one having a certain speed and the other having a speed . At a sufficient distance from the source, when they can be considered plane waves in the region of interest, the first kind consists of expansions and compressions in the direction perpendicular to the wavefront (that is, parallel to the wave's direction of motion); while the second consists of stretching motions occurring in directions parallel to the front (perpendicular to the direction of motion). [7]

Theory

Isotropic medium

Velocity of seismic waves in the Earth versus depth. The negligible S wave velocity in the outer core occurs because it is liquid, while in the solid inner core the S wave velocity is non-zero. Speeds of seismic waves.svg
Velocity of seismic waves in the Earth versus depth. The negligible S wave velocity in the outer core occurs because it is liquid, while in the solid inner core the S wave velocity is non-zero.

For the purpose of this explanation, a solid medium is considered isotropic if its strain (deformation) in response to stress is the same in all directions. Let be the displacement vector of a particle of such a medium from its "resting" position due elastic vibrations, understood to be a function of the rest position and time . The deformation of the medium at that point can be described by the strain tensor , the 3×3 matrix whose elements are

where denotes partial derivative with respect to position coordinate . The strain tensor is related to the 3×3 stress tensor by the equation

Here is the Kronecker delta (1 if , 0 otherwise) and and are the Lamé parameters ( being the material's shear modulus). It follows that

From Newton's law of inertia, one also gets where is the density (mass per unit volume) of the medium at that point, and denotes partial derivative with respect to time. Combining the last two equations one gets the seismic wave equation in homogeneous media

Using the nabla operator notation of vector calculus, , with some approximations, this equation can be written as

Taking the curl of this equation and applying vector identities, one gets

This formula is the wave equation applied to the vector quantity , which is the material's shear strain. Its solutions, the S waves, are linear combinations of sinusoidal plane waves of various wavelengths and directions of propagation, but all with the same speed . Assuming that the medium of propagation is linear, elastic, isotropic, and homogeneous, this equation can be rewritten as [8] where ω is the angular frequency and k is the wavenumber. Thus, .

Taking the divergence of seismic wave equation in homogeneous media, instead of the curl, yields a wave equation describing propagation of the quantity , which is the material's compression strain. The solutions of this equation, the P waves, travel at the faster speed .

The steady state SH waves are defined by the Helmholtz equation [9] where k is the wave number.

S waves in viscoelastic materials

Similar to in an elastic medium, in a viscoelastic material, the speed of a shear wave is described by a similar relationship , however, here, is a complex, frequency-dependent shear modulus and is the frequency dependent phase velocity. [8] One common approach to describing the shear modulus in viscoelastic materials is through the Voigt Model which states: , where is the stiffness of the material and is the viscosity. [8]

S wave technology

Magnetic resonance elastography

Magnetic resonance elastography (MRE) is a method for studying the properties of biological materials in living organisms by propagating shear waves at desired frequencies throughout the desired organic tissue. [10] This method uses a vibrator to send the shear waves into the tissue and magnetic resonance imaging to view the response in the tissue. [11] The measured wave speed and wavelengths are then measured to determine elastic properties such as the shear modulus. MRE has seen use in studies of a variety of human tissues including liver, brain, and bone tissues. [10]

See also

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Transverse wave</span> Moving wave that has oscillations perpendicular to the direction of the wave

In physics, a transverse wave is a wave that oscillates perpendicularly to the direction of the wave's advance. In contrast, a longitudinal wave travels in the direction of its oscillations. All waves move energy from place to place without transporting the matter in the transmission medium if there is one. Electromagnetic waves are transverse without requiring a medium. The designation “transverse” indicates the direction of the wave is perpendicular to the displacement of the particles of the medium through which it passes, or in the case of EM waves, the oscillation is perpendicular to the direction of the wave.

The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:

Linear elasticity is a mathematical model as to how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of change of the fluid's velocity vector.

In differential geometry, the Cotton tensor on a (pseudo)-Riemannian manifold of dimension n is a third-order tensor concomitant of the metric. The vanishing of the Cotton tensor for n = 3 is necessary and sufficient condition for the manifold to be locally conformally flat. By contrast, in dimensions n ≥ 4, the vanishing of the Cotton tensor is necessary but not sufficient for the metric to be conformally flat; instead, the corresponding necessary and sufficient condition in these higher dimensions is the vanishing of the Weyl tensor, while the Cotton tensor just becomes a constant times the divergence of the Weyl tensor. For n < 3 the Cotton tensor is identically zero. The concept is named after Émile Cotton.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

<span class="mw-page-title-main">Love wave</span> Horizontally polarized surface waves

In elastodynamics, Love waves, named after Augustus Edward Hough Love, are horizontally polarized surface waves. The Love wave is a result of the interference of many shear waves (S-waves) guided by an elastic layer, which is welded to an elastic half space on one side while bordering a vacuum on the other side. In seismology, Love waves (also known as Q waves (Quer: German for lateral)) are surface seismic waves that cause horizontal shifting of the Earth during an earthquake. Augustus Edward Hough Love predicted the existence of Love waves mathematically in 1911. They form a distinct class, different from other types of seismic waves, such as P-waves and S-waves (both body waves), or Rayleigh waves (another type of surface wave). Love waves travel with a lower velocity than P- or S- waves, but faster than Rayleigh waves. These waves are observed only when there is a low velocity layer overlying a high velocity layer/ sub–layers.

<span class="mw-page-title-main">Maxwell stress tensor</span> Mathematical description in electromagnetism

The Maxwell stress tensor is a symmetric second-order tensor in three dimensions that is used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.

<span class="mw-page-title-main">Nonlinear acoustics</span>

Nonlinear acoustics (NLA) is a branch of physics and acoustics dealing with sound waves of sufficiently large amplitudes. Large amplitudes require using full systems of governing equations of fluid dynamics and elasticity. These equations are generally nonlinear, and their traditional linearization is no longer possible. The solutions of these equations show that, due to the effects of nonlinearity, sound waves are being distorted as they travel.

The derivation of the Navier–Stokes equations as well as their application and formulation for different families of fluids, is an important exercise in fluid dynamics with applications in mechanical engineering, physics, chemistry, heat transfer, and electrical engineering. A proof explaining the properties and bounds of the equations, such as Navier–Stokes existence and smoothness, is one of the important unsolved problems in mathematics.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.

<span class="mw-page-title-main">Vibration of plates</span>

The vibration of plates is a special case of the more general problem of mechanical vibrations. The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two. This permits a two-dimensional plate theory to give an excellent approximation to the actual three-dimensional motion of a plate-like object.

The acoustoelastic effect is how the sound velocities of an elastic material change if subjected to an initial static stress field. This is a non-linear effect of the constitutive relation between mechanical stress and finite strain in a material of continuous mass. In classical linear elasticity theory small deformations of most elastic materials can be described by a linear relation between the applied stress and the resulting strain. This relationship is commonly known as the generalised Hooke's law. The linear elastic theory involves second order elastic constants and yields constant longitudinal and shear sound velocities in an elastic material, not affected by an applied stress. The acoustoelastic effect on the other hand include higher order expansion of the constitutive relation between the applied stress and resulting strain, which yields longitudinal and shear sound velocities dependent of the stress state of the material. In the limit of an unstressed material the sound velocities of the linear elastic theory are reproduced.

<span class="mw-page-title-main">Rock mass plasticity</span> Study of irreversible deformation of rock

In geotechnical engineering, rock mass plasticity is the study of the response of rocks to loads beyond the elastic limit. Historically, conventional wisdom has it that rock is brittle and fails by fracture, while plasticity is identified with ductile materials such as metals. In field-scale rock masses, structural discontinuities exist in the rock indicating that failure has taken place. Since the rock has not fallen apart, contrary to expectation of brittle behavior, clearly elasticity theory is not the last word.

In optics, the Ewald–Oseen extinction theorem, sometimes referred to as just the extinction theorem, is a theorem that underlies the common understanding of scattering. It is named after Paul Peter Ewald and Carl Wilhelm Oseen, who proved the theorem in crystalline and isotropic media, respectively, in 1916 and 1915. Originally, the theorem applied to scattering by an isotropic dielectric objects in free space. The scope of the theorem was greatly extended to encompass a wide variety of bianisotropic media.

Entropy-vorticity waves refer to small-amplitude waves carried by the gas within which entropy, vorticity, density but not pressure perturbations are propagated. Entropy-vortivity waves are essentially isobaric, incompressible, rotational perturbations along with entropy perturbations. This wave differs from the other well-known small-amplitude wave that is a sound wave, which propagates with respect to the gas within which density, pressure but not entropy perturbations are propagated. The classification of small disturbances into acoustic, entropy and vortex modes were introduced by Leslie S. G. Kovasznay.

References

  1. "Seismology | UPSeis | Michigan Tech". Michigan Technological University. Retrieved 2023-10-07.
  2. "S wave". United States Geological Survey. Archived from the original on July 22, 2021.
  3. "Why can't S-waves travel through liquids?". Earth Observatory of Singapore. Retrieved 2019-12-06.
  4. Greenwood, Margaret Stautberg; Bamberger, Judith Ann (August 2002). "Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control". Ultrasonics. 39 (9): 623–630. doi:10.1016/s0041-624x(02)00372-4. PMID   12206629.
  5. "Do viscous fluids support shear waves propagation?". ResearchGate. Retrieved 2019-12-06.[ unreliable source? ]
  6. "Lecture 16 Seismographs and the earth's interior". University of Illinois at Chicago. 17 July 1997. Archived from the original on 7 May 2002. Retrieved 8 June 2010.
  7. Poisson, S. D. (1831). "Mémoire sur la propagation du mouvement dans les milieux élastiques" [Memoir on the propagation of motion in elastic media]. Mémoires de l'Académie des Sciences de l'Institut de France (in French). 10: 549–605. From p.595: "On verra aisément que cet ébranlement donnera naissance à deux ondes sphériques qui se propageront uniformément, l'une avec une vitesse a, l'autre avec une vitesse b ou a / 3" ... (One will easily see that this quake will give birth to two spherical waves that will be propagated uniformly, one with a speed a, the other with a speed b or a /√3 ... ) From p.602: ... "à une grande distance de l'ébranlement primitif, et lorsque les ondes mobiles sont devenues sensiblement planes dans chaque partie très-petite par rapport à leurs surfaces entières, il ne subsiste plus que des vitesses propres des molécules, normales ou parallèles à ces surfaces; les vitesses normal ayant lieu dans les ondes de la première espèce, où elles sont accompagnées de dilations qui leur sont proportionnelles, et les vitesses parallèles appartenant aux ondes de la seconde espèce, où elles ne sont accompagnées d'aucune dilatation ou condensation de volume, mais seulement de dilatations et de condensations linéaires." ( ... at a great distance from the original quake, and when the moving waves have become roughly planes in every tiny part in relation to their entire surface, there remain [in the elastic solid of the Earth] only the molecules' own speeds, normal or parallel to these surfaces; the normal speeds occur in waves of the first type, where they are accompanied by expansions that are proportional to them, and the parallel speeds belonging to waves of the second type, where they are not accompanied by any expansion or contraction of volume, but only by linear stretchings and squeezings.)
  8. 1 2 3 Rouze; Deng; Trutna; Palmeri; Nightengale (May 2018). "Characterization of Viscoelastic Materials Using Group Shear Wave Speeds". Institute of Electrical and Electronics Engineers. 65 (5): 780–794. doi:10.1109/TUFFC.2018.2815505. PMC   5972540 . PMID   29733281.
  9. Graff, Karl F. (2012-04-26). Wave Motion in Elastic Solids. Courier Corporation. ISBN   978-0-486-13957-9.
  10. 1 2 Tweten, Dennis J.; Okamoto, Ruth J.; Schmidt, John L.; Garbow, Joel R.; Bayly, Philip V. (November 2015). "Estimation of material parameters from slow and fast shear waves in an incompressible, transversely isotropic material". Journal of Biomechanics. 48 (15): 4002–4009. doi:10.1016/j.jbiomech.2015.09.009. PMC   4663187 . PMID   26476762.
  11. "MR Shear Wave Elastography". University of Utah Health. 10 November 2021.

Further reading