In geotechnical engineering, soil compaction is the process in which stress applied to a soil causes densification as air is displaced from the pores between the soil grains. When stress is applied that causes densification due to water (or other liquid) being displaced from between the soil grains, then consolidation, not compaction, has occurred. Normally, compaction is the result of heavy machinery compressing the soil, but it can also occur due to the passage of, for example, animal feet.
In soil science and agronomy, soil compaction is usually a combination of both engineering compaction and consolidation, so may occur due to a lack of water in the soil, the applied stress being internal suction due to water evaporation [1] as well as due to passage of animal feet. Affected soils become less able to absorb rainfall, thus increasing runoff and erosion. Plants have difficulty in compacted soil because the mineral grains are pressed together, leaving little space for air and water, which are essential for root growth. Burrowing animals also find it a hostile environment, because the denser soil is more difficult to penetrate. The ability of a soil to recover from this type of compaction depends on climate, mineralogy and fauna. Soils with high shrink–swell capacity, such as vertisols, recover quickly from compaction where moisture conditions are variable (dry spells shrink the soil, causing it to crack). But clays such as kaolinite, which do not crack as they dry, cannot recover from compaction on their own unless they host ground-dwelling animals such as earthworms—the Cecil soil series is an example.
Before soils can be compacted in the field, some laboratory tests are required to determine their engineering properties. Among various properties, the maximum dry density and the optimum moisture content are vital and specify the required density to be compacted in the field. [2]
Soil compaction is a vital part of the construction process. It is used for support of structural entities such as building foundations, roadways, walkways, and earth retaining structures to name a few. For a given soil type certain properties may deem it more or less desirable to perform adequately for a particular circumstance. In general, the preselected soil should have adequate strength, be relatively incompressible so that future settlement is not significant, be stable against volume change as water content or other factors vary, be durable and safe against deterioration, and possess proper permeability. [3]
When an area is to be filled or backfilled the soil is placed in layers called lifts. The ability of the first fill layers to be properly compacted will depend on the condition of the natural material being covered. If unsuitable material is left in place and backfilled, it may compress over a long period under the weight of the earth fill, causing settlement cracks in the fill or in any structure supported by the fill. [4] In order to determine if the natural soil will support the first fill layers, an area can be proofrolled. Proofrolling consists of utilizing a piece of heavy construction equipment to roll across the fill site and watching for deflections to be revealed. These areas will be indicated by the development of rutting, pumping, or ground weaving. [5]
To ensure adequate soil compaction is achieved, project specifications will indicate the required soil density or degree of compaction that must be achieved. These specifications are generally recommended by a geotechnical engineer in a geotechnical engineering report.
The soil type—that is, grain-size distributions, shape of the soil grains, specific gravity of soil solids, and amount and type of clay minerals, present—has a great influence on the maximum dry unit weight and optimum moisture content. [6] It also has a great influence on how the materials should be compacted in given situations. Compaction is accomplished by use of heavy equipment. In sands and gravels, the equipment usually vibrates, to cause re-orientation of the soil particles into a denser configuration. In silts and clays, a sheepsfoot roller is frequently used, to create small zones of intense shearing, which drives air out of the soil.
Determination of adequate compaction is done by determining the in-situ density of the soil and comparing it to the maximum density determined by a laboratory test. The most commonly used laboratory test is called the Proctor compaction test and there are two different methods in obtaining the maximum density. They are the standard Proctor and modified Proctor tests; the modified Proctor is more commonly used. For small dams, the standard Proctor may still be the reference. [5]
While soil under structures and pavements needs to be compacted, it is important after construction to decompact areas to be landscaped so that vegetation can grow.
There are several means of achieving compaction of a material. Some are more appropriate for soil compaction than others, while some techniques are only suitable for particular soils or soils in particular conditions. Some are more suited to compaction of non-soil materials such as asphalt. Generally, those that can apply significant amounts of shear as well as compressive stress, are most effective.
The available techniques can be classified as:
The construction plant available to achieve compaction is extremely varied and is described elsewhere.
Soil compactors are used to perform test methods which cover laboratory compaction methods used to determine the relationship between molding water content and dry unit weight of soils. Soil placed as engineering fill is compacted to a dense state to obtain satisfactory engineering properties such as, shear strength, compressibility, or permeability. In addition, foundation soils are often compacted to improve their engineering properties. Laboratory compaction tests provide the basis for determining the percent compaction and molding water content needed to achieve the required engineering properties, and for controlling construction to assure that the required compaction and water contents are achieved. Test methods such as EN 13286-2, EN 13286-47, ASTM D698, ASTM D1557, AASHTO T99, AASHTO T180, AASHTO T193, BS 1377:4 provide soil compaction testing procedures. [7]
Geotechnical engineering, also known as geotechnics, is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics to solve its engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences.
A soil test is a laboratory or in-situ analysis to determine the chemical, physical or biological characteristics of a soil. Possibly the most widely conducted soil tests are those performed to estimate the plant-available concentrations of nutrients in order to provide fertilizer recommendations in agriculture. In geotechnical engineering, soil tests can be used to determine the current physical state of the soil, the seepage properties, the shear strength and the deformation properties of the soil. Other soil tests may be used in geochemical or ecological investigations.
Soil liquefaction occurs when a cohesionless saturated or partially saturated soil substantially loses strength and stiffness in response to an applied stress such as shaking during an earthquake or other sudden change in stress condition, in which material that is ordinarily a solid behaves like a liquid. In soil mechanics, the term "liquefied" was first used by Allen Hazen in reference to the 1918 failure of the Calaveras Dam in California. He described the mechanism of flow liquefaction of the embankment dam as:
If the pressure of the water in the pores is great enough to carry all the load, it will have the effect of holding the particles apart and of producing a condition that is practically equivalent to that of quicksand... the initial movement of some part of the material might result in accumulating pressure, first on one point, and then on another, successively, as the early points of concentration were liquefied.
Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, and hydrology.
The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil. This test is the most frequently used subsurface exploration drilling test performed worldwide. The test procedure is described in ISO 22476-3, ASTM D1586 and Australian Standards AS 1289.6.3.1. The test provides samples for identification purposes and provides a measure of penetration resistance which can be used for geotechnical design purposes. Various local and widely published international correlations that relate blow count, or N-value, to the engineering properties of soils are available for geotechnical engineering purposes.
The effective stress can be defined as the stress, depending on the applied tension and pore pressure , which controls the strain or strength behaviour of soil and rock for whatever pore pressure value or, in other terms, the stress which applied over a dry porous body provides the same strain or strength behaviour which is observed at ≠ 0. In the case of granular media it can be viewed as a force that keeps a collection of particles rigid. Usually this applies to sand, soil, or gravel, as well as every kind of rock and several other porous materials such as concrete, metal powders, biological tissues etc. The usefulness of an appropriate ESP formulation consists in allowing to assess the behaviour of a porous body for whatever pore pressure value on the basis of experiments involving dry samples.
A direct shear test is a laboratory or field test used by geotechnical engineers to measure the shear strength properties of soil or rock material, or of discontinuities in soil or rock masses.
Geotechnical investigations are performed by geotechnical engineers or engineering geologists to obtain information on the physical properties of soil earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions; this type of investigation is called a site investigation. Geotechnical investigations are also used to measure the thermal resistance of soils or backfill materials required for underground transmission lines, oil and gas pipelines, radioactive waste disposal, and solar thermal storage facilities. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, geophysical methods are used to obtain data about sites. Subsurface exploration usually involves soil sampling and laboratory tests of the soil samples retrieved.
BS 5930:2015, "the code of practice for site investigations", is a UK code of practice which came into effect on 31 July 2015 British Standards Institution.
In materials science, a triaxial shear test is a common method to measure the mechanical properties of many deformable solids, especially soil and rock, and other granular materials or powders. There are several variations on the test. In a triaxial shear test, stress is applied to a sample of the material being tested in a way which results in stresses along one axis being different from the stresses in perpendicular directions. This is typically achieved by placing the sample between two parallel platens which apply stress in one direction, and applying fluid pressure to the specimen to apply stress in the perpendicular directions.
In soil science, soil gradation is a classification of a coarse-grained soil that ranks the soil based on the different particle sizes contained in the soil. Soil gradation is an important aspect of soil mechanics and geotechnical engineering because it is an indicator of other engineering properties such as compressibility, shear strength, and hydraulic conductivity. In a design, the gradation of the in situ soil often controls the design and ground water drainage of the site. A poorly graded soil will have better drainage than a well graded soil, if it is not high in clay quality.
The Proctor compaction test is a laboratory method of experimentally determining the optimal moisture content at which a given soil type will become most dense and achieve its maximum dry density. The test is named in honor of Ralph Roscoe Proctor, who in 1933 showed that the dry density of a soil for a given compactive effort depends on the amount of water the soil contains during soil compaction. His original test is most commonly referred to as the standard Proctor compaction test; his test was later updated to create the modified Proctor compaction test.
Shear strength is a term used in soil mechanics to describe the magnitude of the shear stress that a soil can sustain. The shear resistance of soil is a result of friction and interlocking of particles, and possibly cementation or bonding of particle contacts. Due to interlocking, particulate material may expand or contract in volume as it is subject to shear strains. If soil expands its volume, the density of particles will decrease and the strength will decrease; in this case, the peak strength would be followed by a reduction of shear stress. The stress-strain relationship levels off when the material stops expanding or contracting, and when interparticle bonds are broken. The theoretical state at which the shear stress and density remain constant while the shear strain increases may be called the critical state, steady state, or residual strength.
Nuclear densitometry is a technique used in civil construction and the petroleum industry, as well as for mining and archaeology purposes, to measure the density and inner structure of the test material. The processes uses a nuclear density gauge, which consists of a radiation source that emits particles and a sensor that counts the received particles that are either reflected by the test material or pass through it. By calculating the percentage of particles that return to the sensor, the gauge can be calibrated to measure the density.
Cellular confinement systems (CCS)—also known as geocells—are widely used in construction for erosion control, soil stabilization on flat ground and steep slopes, channel protection, and structural reinforcement for load support and earth retention. Typical cellular confinement systems are geosynthetics made with ultrasonically welded high-density polyethylene (HDPE) strips or novel polymeric alloy (NPA)—and expanded on-site to form a honeycomb-like structure—and filled with sand, soil, rock, gravel or concrete.
Preconsolidation pressure is the maximum effective vertical overburden stress that a particular soil sample has sustained in the past. This quantity is important in geotechnical engineering, particularly for finding the expected settlement of foundations and embankments. Alternative names for the preconsolidation pressure are preconsolidation stress, pre-compression stress, pre-compaction stress, and preload stress. A soil is called overconsolidated if the current effective stress acting on the soil is less than the historical maximum.
An oedometer test is a kind of geotechnical investigation performed in geotechnical engineering that measures a soil's consolidation properties. Oedometer tests are performed by applying different loads to a soil sample and measuring the deformation response. The results from these tests are used to predict how a soil in the field will deform in response to a change in effective stress.
Offshore geotechnical engineering is a sub-field of geotechnical engineering. It is concerned with foundation design, construction, maintenance and decommissioning for human-made structures in the sea. Oil platforms, artificial islands and submarine pipelines are examples of such structures. The seabed has to be able to withstand the weight of these structures and the applied loads. Geohazards must also be taken into account. The need for offshore developments stems from a gradual depletion of hydrocarbon reserves onshore or near the coastlines, as new fields are being developed at greater distances offshore and in deeper water, with a corresponding adaptation of the offshore site investigations. Today, there are more than 7,000 offshore platforms operating at a water depth up to and exceeding 2000 m. A typical field development extends over tens of square kilometers, and may comprise several fixed structures, infield flowlines with an export pipeline either to the shoreline or connected to a regional trunkline.
In soil mechanics, dilatancy or shear dilatancy is the volume change observed in granular materials when they are subjected to shear deformations. This effect was first described scientifically by Osborne Reynolds in 1885/1886 and is also known as Reynolds dilatancy. It was brought into the field of geotechnical engineering by Peter Walter Rowe.
The hole erosion test (HET) is a method used in geotechnical engineering to quantify the resistance of a soil to erosion, and is specifically relevant to the topic of internal erosion in embankment dams. The test can be performed in a laboratory on a remolded soil sample, and provides estimates of both the critical shear stress for erosion of the soil sample as well as a numerical measure of soil erodibility. In the design and engineering of embankment dams, the critical shear stress provided by this test indicates the maximum shear stress that a fluid can apply to a soil before a concentrated leak forms and erosion begins. The numerical measure of soil erodibility can be used to predict how quickly this erosion will progress, and it can be found as an input in various computer simulations for dam failure.