Hydrophobic soil is a soil whose particles repel water. The layer of hydrophobicity is commonly found at or a few centimeters below the surface, parallel to the soil profile. [1] This layer can vary in thickness and abundance and is typically covered by a layer of ash or burned soil.
Hydrophobic soil is most familiarly formed when a fire or hot air disperses waxy compounds found in the uppermost litter layer consisting of organic matter. [2] After the compounds disperse, they mainly coat sandy soil particles near the surface in the upper layers of soil, making the soil hydrophobic. Other producers of hydrophobic coatings are contamination and industrial spillages along with soil microbial activity. [2] Hydrophobicity can also be seen as a natural soil property that results from the degradation of natural vegetation such as Eucalyptus that has natural wax properties. [3]
It was found that in a particular New Zealand sand, this waxy lipid coating consisted of primarily hydrocarbons and triglycerides that were basic in pH along with a lesser value of acidic long-chain fatty acids. [4] Capillary penetration amongst soil particles is limited by the hydrophobic coating on the particles, resulting in water repellence in each particle affected as the hydrophilic head of the lipid attaches itself to the sand particle leaving the hydrophobic tail shielding the outside of the particle. [2] This can be seen in Figure 1 below.
Other important soil water averting factors have been found to include soil texture, microbiology, soil surface roughness, soil organic matter content, soil chemical composition, acidity, soil water content, soil type, mineralogy of clay particles, and seasonal variations of the region. [5] Soil texture plays a large role in predicting whether a soil could be water repelling as larger grained particles in the soil such as sand have smaller surface areas, making them more prone to being fully coated by hydrophobic compounds. It is much more difficult to entirely coat a silt or clay particle with more surface area, but when it does happen, the resulting water repellency of the soil is severe. [6] As soil organic matter in the form of plant or microbial biomass decomposes, physiochemical changes can release these hydrophobic compounds into the soil as well. [7] This, however, depends on the type of microbial activity present in the soil as it can also hinder the development of hydrophobic compounds. [6]
Soil water repellence is almost always tested with the water droplet penetration time (WDPT) test first because of the simplicity of the test. [8] This test is executed by recording the time it takes for one droplet of water to infiltrate a specific soil, indicating the stability of repellency. [2] Water infiltration is expressed as water entering the soil in a spontaneous fashion and correlates with the angle of the water-soil contact. If the water-soil contact angle is greater than 90º, then the soil is determined to be hydrophobic. It has also been observed that if the test droplet is placed on hydrophobic soil, it will rapidly develop a particulate skin before disappearing. [2]
Results of the WDPT: [9]
Penetration time of water droplet | Classification |
---|---|
Less than 5 seconds | Soil is not water repellent |
5 seconds to 1 minute | Soil is slightly repellent |
1 to 10 minutes | Soil is water repellent |
More than 10 minutes | Soil is severely repellent |
Table 1: Characterizing the degree of hydrophobicity in soils based on the water droplet penetration test.
Another method for determining soil water repellency is the molarity of ethanol droplet (MED) test. [10] The MED test uses solutions of ethanol of varying surface tensions to observe soil wetting within a time frame of 10 seconds. If there is no wetting within the specified timeframe, an aqueous solution of ethanol with lower surface tension is then placed on a different area of the sample. The results of the MED test depend on the molarity of the ethanol solution whose droplets were absorbed in the allotted 10 seconds. [10] Classifying soil water repellency from this test can be done by using a MED index where a non-water repellent soil has an index of less than or equal to 1 and a severely water repellent soil has an index of greater than or equal to 2.2. [8] The MED index, 90º surface tension, ethanol molarity, and volume percentage correlate and can be converted into one another. [8] In this test, the liquid-air surface tension value of the ethanol solution that is absorbed within this timeframe is used as the ninety-degree surface tension of the soil. The water entry pressure associated with the tested soil is another indicator of infiltration rates as it is associated with the degree of water repellency along with soil pore size. [8]
Hydrophobic soils and their aversion to water have consequences on plant water availability, plant-available nutrients, hydrology, and geomorphology of the affected area. [5] By reducing the infiltration rate, runoff generation time is reduced and leads to an increase in the land flow of water during precipitation or irrigation events. Greater runoff increases erosion, causes uneven wetting patterns in soil, accelerates nutrient leaching reducing soil fertility, develops different flow paths in the region, and increases the risk of contamination in soils. [5]
Drainage of nutrients occurs in weaker areas of repellency in hydrophobic soil where water preferentially drains into the soil. Because the water cannot drain into the stronger areas of hydrophobicity, the water finds pathways of preferential flow where it can infiltrate deeper into the soil profile. If irrigation or precipitation events are large, the water could potentially flow below the root zone, making it unavailable to any plant life and oftentimes taking fertilizers and nutrients with it. This additionally leads to an uneven distribution of nutrients and applied chemicals resulting in patchy vegetation. [11]
In an agricultural setting, hydrophobic soil is a large constraint on crop yields. For example, in Australia, there have been documented reports of up to 80% loss in production due to soil water repellency. [6] This is due to low rates of seed germination in soils as well as low plant available water levels. [3]
Hydrophobic soils have been found on all continents except for Antarctica. [5] It occurs in dry regions in the United States, southern Australia, and the Mediterranean Basin, and in wet regions including Sweden, the Netherlands, British Columbia, and Columbia. [6] Although it mainly appears in coarse-textured soils such as sand-dominated soils, it affects soils of all different soil types and has been reported in forests, pastures, agricultural plots, and shrublands. [6] Generally, the degree of hydrophobicity is more severe in the soils of legume-grass pastures compared to cultivated agricultural fields. [3]
One method of managing water repellent soils is claying. This is done by adding clay materials to the soil, making the overall soil texture have more surface area. It has been found that adding clay to a hydrophobic field of barley increased crop yield from 1.7 to 3.4 t/ha, and in a field of lupins increased the yield by 1 t/ha within a time frame of 2 years. [3] Liming is another method to reduce soil water repellency. [3] The process of liming consists of adding calcium carbonate to increase the pH of soil. Humic acid is only water-soluble at a pH of greater than 6.5 while fulvic acid is soluble at all pH ranges. Both resident acids have a property that enables them to reduce the surface tension of water when in solution. By increasing the pH of soil, the ability of naturally occurring fulvic acid and humic acid to increase infiltration in hydrophobic soils increases. In contrast, it has been reported that soils with a deficiency of fluvic acid in solution would have more severe water repellency. [3]
The agricultural practice of tilling decreases the degree of soil water repellency. Tilling crop fields reduces the carbon content of the soil through mixing and mineralization, thus decreasing the likelihood of decomposition by microorganisms that can lead to the dispersal of the hydrophobic coating that triggers soil water repellency. [3]
Naturally forming holes and cracks in hydrophobic soil patches allow for water to infiltrate the surface. These can form from burrowing animals, root channels, or macropores from decayed roots. [12] These macropores have been identified as important pathways in forest ecosystems for water to penetrate the soil because they account for approximately 35% of the near-surface volume of the soil. [12]
An emulsion is a mixture of two or more liquids that are normally immiscible owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Although the terms colloid and emulsion are sometimes used interchangeably, emulsion should be used when both phases, dispersed and continuous, are liquids. In an emulsion, one liquid is dispersed in the other. Examples of emulsions include vinaigrettes, homogenized milk, liquid biomolecular condensates, and some cutting fluids for metal working.
In chemistry, hydrophobicity is the chemical property of a molecule that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water.
Surfactants are chemical compounds that decrease the surface tension or interfacial tension between two liquids, a liquid and a gas, or a liquid and a solid. The word "surfactant" is a blend of surface-active agent, coined in 1950. As they consist of a water-repellent and a water-attracting part, they enable water and oil to mix; they can form foam and facilitate the detachment of dirt.
Frost heaving is an upwards swelling of soil during freezing conditions caused by an increasing presence of ice as it grows towards the surface, upwards from the depth in the soil where freezing temperatures have penetrated into the soil. Ice growth requires a water supply that delivers water to the freezing front via capillary action in certain soils. The weight of overlying soil restrains vertical growth of the ice and can promote the formation of lens-shaped areas of ice within the soil. Yet the force of one or more growing ice lenses is sufficient to lift a layer of soil, as much as 1 foot or more. The soil through which water passes to feed the formation of ice lenses must be sufficiently porous to allow capillary action, yet not so porous as to break capillary continuity. Such soil is referred to as "frost susceptible". The growth of ice lenses continually consumes the rising water at the freezing front. Differential frost heaving can crack road surfaces—contributing to springtime pothole formation—and damage building foundations. Frost heaves may occur in mechanically refrigerated cold-storage buildings and ice rinks.
Biological soil crusts are communities of living organisms on the soil surface in arid and semi-arid ecosystems. They are found throughout the world with varying species composition and cover depending on topography, soil characteristics, climate, plant community, microhabitats, and disturbance regimes. Biological soil crusts perform important ecological roles including carbon fixation, nitrogen fixation and soil stabilization; they alter soil albedo and water relations and affect germination and nutrient levels in vascular plants. They can be damaged by fire, recreational activity, grazing and other disturbances and can require long time periods to recover composition and function. Biological soil crusts are also known as biocrusts or as cryptogamic, microbiotic, microphytic, or cryptobiotic soils.
The lotus effect refers to self-cleaning properties that are a result of ultrahydrophobicity as exhibited by the leaves of Nelumbo, the lotus flower. Dirt particles are picked up by water droplets due to the micro- and nanoscopic architecture on the surface, which minimizes the droplet's adhesion to that surface. Ultrahydrophobicity and self-cleaning properties are also found in other plants, such as Tropaeolum (nasturtium), Opuntia, Alchemilla, cane, and also on the wings of certain insects.
Infiltration is the process by which water on the ground surface enters the soil. It is commonly used in both hydrology and soil sciences. The infiltration capacity is defined as the maximum rate of infiltration. It is most often measured in meters per day but can also be measured in other units of distance over time if necessary. The infiltration capacity decreases as the soil moisture content of soils surface layers increases. If the precipitation rate exceeds the infiltration rate, runoff will usually occur unless there is some physical barrier.
In chemistry and materials science, ultrahydrophobic surfaces are highly hydrophobic, i.e., extremely difficult to wet. The contact angles of a water droplet on an ultrahydrophobic material exceed 150°. This is also referred to as the lotus effect, after the superhydrophobic leaves of the lotus plant. A droplet striking these kinds of surfaces can fully rebound like an elastic ball. Interactions of bouncing drops can be further reduced using special superhydrophobic surfaces that promote symmetry breaking, pancake bouncing or waterbowl bouncing.
In physics, a "coffee ring" is a pattern left by a puddle of particle-laden liquid after it evaporates. The phenomenon is named for the characteristic ring-like deposit along the perimeter of a spill of coffee. It is also commonly seen after spilling red wine. The mechanism behind the formation of these and similar rings is known as the coffee ring effect or in some instances, the coffee stain effect, or simply ring stain.
Surface runoff is the unconfined flow of water over the ground surface, in contrast to channel runoff. It occurs when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas do not allow water to soak into the ground. Furthermore, runoff can occur either through natural or human-made processes.
Baseflow is the portion of the streamflow that is sustained between precipitation events, fed to streams by delayed pathways. It should not be confused with groundwater flow. Fair weather flow is also called base flow.
Water-repellent glass (WRG) is a transparent coating film fabricated onto glass, enabling the glass to exhibit hydrophobicity and durability. WRGs are often manufactured out of materials including derivatives from per- and polyfluoroalkyl substances (PFAS), tetraethylorthosilicate (TEOS), polydimethylsilicone (PDMS), and fluorocarbons. In order to prepare WRGs, sol-gel processes involving dual-layer enrichments of large size glasses are commonly implemented.
Janus particles are special types of nanoparticles or microparticles whose surfaces have two or more distinct physical properties. This unique surface of Janus particles allows two different types of chemistry to occur on the same particle. The simplest case of a Janus particle is achieved by dividing the particle into two distinct parts, each of them either made of a different material, or bearing different functional groups. For example, a Janus particle may have one half of its surface composed of hydrophilic groups and the other half hydrophobic groups, the particles might have two surfaces of different color, fluorescence, or magnetic properties. This gives these particles unique properties related to their asymmetric structure and/or functionalization.
Paint has four major components: pigments, binders, solvents, and additives. Pigments serve to give paint its color, texture, toughness, as well as determining if a paint is opaque or not. Common white pigments include titanium dioxide and zinc oxide. Binders are the film forming component of a paint as it dries and affects the durability, gloss, and flexibility of the coating. Polyurethanes, polyesters, and acrylics are all examples of common binders. The solvent is the medium in which all other components of the paint are dissolved and evaporates away as the paint dries and cures. The solvent also modifies the curing rate and viscosity of the paint in its liquid state. There are two types of paint: solvent-borne and water-borne paints. Solvent-borne paints use organic solvents as the primary vehicle carrying the solid components in a paint formulation, whereas water-borne paints use water as the continuous medium. The additives that are incorporated into paints are a wide range of things which impart important effects on the properties of the paint and the final coating. Common paint additives are catalysts, thickeners, stabilizers, emulsifiers, texturizers, biocides to fight bacterial growth, etc.
A superhydrophobic coating is a thin surface layer that repels water. It is made from superhydrophobic materials, and typically cause an almost imperceptibly thin layer of air to form on top of a surface. Droplets hitting this kind of coating can fully rebound. Generally speaking, superhydrophobic coatings are made from composite materials where one component provides the roughness and the other provides low surface energy.
The surface chemistry of paper is responsible for many important paper properties, such as gloss, waterproofing, and printability. Many components are used in the paper-making process that affect the surface.
Icephobicity is the ability of a solid surface to repel ice or prevent ice formation due to a certain topographical structure of the surface. The word "icephobic" was used for the first time at least in 1950; however, the progress in micropatterned surfaces resulted in growing interest towards icephobicity since the 2000s.
Self-cleaning surfaces are a class of materials with the inherent ability to remove any debris or bacteria from their surfaces in a variety of ways. The self-cleaning functionality of these surfaces are commonly inspired by natural phenomena observed in lotus leaves, gecko feet, and water striders to name a few. The majority of self-cleaning surfaces can be placed into three categories:
Liquid marbles are non-stick droplets wrapped by micro- or nano-metrically scaled hydrophobic, colloidal particles ; representing a platform for a diversity of chemical and biological applications. Liquid marbles are also found naturally; aphids convert honeydew droplets into marbles. A variety of non-organic and organic liquids may be converted into liquid marbles. Liquid marbles demonstrate elastic properties and do not coalesce when bounced or pressed lightly. Liquid marbles demonstrate a potential as micro-reactors, micro-containers for growing micro-organisms and cells, micro-fluidics devices, and have even been used in unconventional computing. Liquid marbles remain stable on solid and liquid surfaces. Statics and dynamics of rolling and bouncing of liquid marbles were reported. Liquid marbles coated with poly-disperse and mono-disperse particles have been reported. Liquid marbles are not hermetically coated by solid particles but connected to the gaseous phase. Kinetics of the evaporation of liquid marbles has been investigated.
Wetting solutions are liquids containing active chemical compounds that minimise the distance between two immiscible phases by lowering the surface tension to induce optimal spreading. The two phases, known as an interface, can be classified into five categories, namely, solid-solid, solid-liquid, solid-gas, liquid-liquid and liquid-gas.