Technosol

Last updated

A Technosol in the World Reference Base for Soil Resources [1] is a Reference Soil Group that combines soils whose properties and pedogenesis are dominated by their technical origin. [2] They contain either a significant amount of artefacts (something in the soil recognizably made or extracted from the earth by humans), some sort of geotechnical liner, or are sealed by technic hard material (hard material created by humans, having properties unlike natural rock). They include soils from wastes (landfills, sludge, cinders, mine spoils and ashes), pavements with their underlying unconsolidated materials, soils with geomembranes and constructed soils in human-made materials. Transported natural soil material does not qualify as Technosol and is described with the Transportic qualifier in WRB. [1] Technosols are often referred to as urban or mine soils. They are recognized in the new Russian soil classification system as Technogenic Superficial Formations.

Contents

Technosols are developed on all kinds of materials made or exposed by human activity that otherwise would not occur at the Earth’s surface. They occur mostly in urban and industrial areas, usually in small areas, and can be associated with other soil groups in a complex pattern. They are closely related to Anthrosols, which are soils created by long-term measures to enhance fertility for agricultural use, like the intensive addition of organic matter to a soil, such as an old urban garden.

Most of the research on anthropogenic soils describe specific aspects of their biology, chemistry or physical properties, cultural heritage and human geography, erosion, wastes, pollution, fertilizer management, taxonomy. Very few of them, [3] [4] [5] try to answer to the question: How fast do they start pedogenesis (viz., differentiating horizons)? A Technosol could differentiate A and O horizons at rates of more than one centimeter per year. [6] Technosols are found throughout the world, e.g. at or near cities, roads, mines, refuse dumps, oil spills and coal fly ash deposits.

These soils are more likely to be contaminated than other soils. Many Technosols have to be treated with care as they may contain toxic substances resulting from industrial processes.

See also

Related Research Articles

A soil type is a taxonomic unit in soil science. All soils that share a certain set of well-defined properties form a distinctive soil type. Soil type is a technical term of soil classification, the science that deals with the systematic categorization of soils. Every soil of the world belongs to a certain soil type. Soil type is an abstract term. In nature, you will not find soil types. You will find soils that belong to a certain soil type.

<span class="mw-page-title-main">Chernozem</span> Soil type; very fertile, black-coloured soil containing a high percentage of humus

Chernozem, also called black soil, regur soil or black cotton soil, is a black-colored soil containing a high percentage of humus and high percentages of phosphorus and ammonia compounds. Chernozem is very fertile soil and can produce high agricultural yields with its high moisture-storage capacity. Chernozems are a Reference Soil Group of the World Reference Base for Soil Resources (WRB)

<span class="mw-page-title-main">Soil classification</span> Systematic categorization of soils

Soil classification deals with the systematic categorization of soils based on distinguishing characteristics as well as criteria that dictate choices in use.

<span class="mw-page-title-main">Gelisol</span> Permafrost soils

Gelisols are an order in USDA soil taxonomy. They are soils of very cold climates which are defined as containing permafrost within two meters of the soil surface. The word "Gelisol" comes from the Latin gelare meaning "to freeze", a reference to the process of cryoturbation that occurs from the alternating thawing and freezing characteristic of Gelisols.

In USDA soil taxonomy, a Psamment is defined as an Entisol which consists basically of unconsolidated sand deposits, often found in shifting sand dunes but also in areas of very coarse-textured parent material subject to millions of years of weathering. This latter case is characteristic of the Guiana Highlands of northern South America. A Psamment has no distinct soil horizons, and must consist entirely of material of loamy sand or coarser in texture. In the World Reference Base for Soil Resources (WRB), most Psamments belong to the Arenosols. However, Psamments of fluviatile, lacustrine or marine origin belong to the Fluvisols.

<span class="mw-page-title-main">Entisol</span> Type of soil

Entisols are soils, as defined under USDA soil taxonomy, that do not show any profile development other than an A-horizon. Entisols have no diagnostic horizons, and are unaltered from their parent material, which could be unconsolidated sediment, or rock. Entisols are the most common soils, occupying about 16% of the global ice-free land area.

<span class="mw-page-title-main">World Reference Base for Soil Resources</span> International soil classification system

The World Reference Base for Soil Resources (WRB) is an international soil classification system for naming soils and creating legends for soil maps. The currently valid version is the fourth edition 2022. It is edited by a working group of the International Union of Soil Sciences (IUSS).

<span class="mw-page-title-main">Gypsisol</span>

Gypsisols in the World Reference Base for Soil Resources (WRB) are soils with substantial secondary accumulation of gypsum (CaSO4.2H2O). They are found in the driest parts of the arid climate zone. In the USDA soil taxonomy they are classified as Gypsids (USDA Soil Taxonomy), in the Russian soil classification they are called Desert soils (USSR).

<span class="mw-page-title-main">Gleysol</span> Saturated soil type

A gleysol or gley soil is a hydric soil that unless drained is saturated with groundwater for long enough to develop a characteristic gleyic colour pattern. The pattern is essentially made up of reddish, brownish, or yellowish colours at surfaces of soil particles and/or in the upper soil horizons mixed with greyish/blueish colours inside the peds and/or deeper in the soil. Gleysols are also known as Gleyzems, meadow soils, Aqu-suborders of Entisols, Inceptisols and Mollisols, or as groundwater soils and hydro-morphic soils.

<span class="mw-page-title-main">Calcisol</span>

A Calcisol in the World Reference Base for Soil Resources (WRB) is a soil with a substantial secondary accumulation of lime. Calcisols are common in calcareous parent materials and widespread in arid and semi-arid environments. Formerly Calcisols were internationally known as Desert soils and Takyrs.

<span class="mw-page-title-main">Cambisol</span> Type of soil

A Cambisol in the World Reference Base for Soil Resources (WRB) is a soil in the beginning of soil formation. The horizon differentiation is weak. This is evident from weak, mostly brownish discolouration and/or structure formation in the soil profile.

<span class="mw-page-title-main">Durisol</span>

A Durisol is a Reference Soil Group under the World Reference Base for Soil Resources (WRB) referring to free-draining soils in arid and semi-arid environments that contain grains cemented together by secondary silica (SiO2) in the upper metre of soil, occurring either as concretions (durinodesduric horizon) or as a continuously cemented layer (duripanhardpan (Australia) – dorbank (South Africa) – petroduric horizon). The name is derived from Latin durus for hard.

<span class="mw-page-title-main">Regosol</span> Highly Weathered Soil

A Regosol in the World Reference Base for Soil Resources (WRB) is very weakly developed mineral soil in unconsolidated materials. Regosols are extensive in eroding lands, in particular in arid and semi-arid areas and in mountain regions. Internationally, Regosols correlate with soil taxa that are marked by incipient soil formation such as Entisols in the USDA soil taxonomy or Rudosols and possibly some Tenosols in the Australian Soil Classification.

<span class="mw-page-title-main">Planosol</span> Soil type

A Planosol in the World Reference Base for Soil Resources is a soil with a light-coloured, coarse-textured, surface horizon that shows signs of periodic water stagnation and abruptly overlies a dense, slowly permeable subsoil with significantly more clay than the surface horizon. In the US Soil Classification of 1938 used the name Planosols, whereas its successor, the USDA soil taxonomy, includes most Planosols in the Great Groups Albaqualfs, Albaquults and Argialbolls.

<span class="mw-page-title-main">Stagnosol</span> Saturated soil type

A Stagnosol in the World Reference Base for Soil Resources (WRB) is soil with strong mottling of the soil profile due to redox processes caused by stagnating surface water.

An anthrosol in the World Reference Base for Soil Resources (WRB) is a type of soil that has been formed or heavily modified due to long-term human activity, such as from irrigation, addition of organic waste or wet-field cultivation used to create paddy fields.

<span class="mw-page-title-main">Fluvisol</span>

A fluvisol in the World Reference Base for Soil Resources (WRB) is a genetically young soil in alluvial deposits. Apart from river sediments, they also occur in lacustrine and marine deposits. Fluvisols correlate with fluvents and fluvaquents of the USDA soil taxonomy. The good natural fertility of most fluvisols and their attractive dwelling sites on river levees and higher parts in marine landscapes were recognized in prehistoric times.

Luvisols are a group of soils, comprising one of the 32 Reference Soil Groups in the international system of soil classification, the World Reference Base for Soil Resources (WRB). They are widespread, especially in temperate climates, and are generally fertile. Luvisols are widely used for agriculture.

The Polish Soil Classification is a soil classification system used to describe, classify and organize the knowledge about soils in Poland.

A Retisol is a Reference Soil Group of the World Reference Base for Soil Resources (WRB). Retisols are characterized by clay migration and an additional specific feature: The clay-poorer and lighter coloured eluvial horizon intercalates netlike into the clay-richer more intensely coloured illuvial horizon. The illuvial horizon is the diagnostic argic horizon, and the intercalation is called retic properties.

References

  1. 1 2 IUSS Working Group WRB (2022). "World Reference Base for Soil Resources, 4th edition" (PDF). IUSS, Vienna.
  2. Rossiter, D G (2007). "Classification of Urban and Industrial Soils in the World Reference Base for Soil Resources". Journal of Soils and Sediments. 7 (2): 96–100. Bibcode:2007JSoSe...7...96R. doi:10.1065/jss2007.02.208. S2CID   10338446.
  3. Bini, C. & Gaballo, S. (2006). "Pedogenic trends in anthrosols developed in sulfidic mine spoils: A case study in the Temperino mine archaeological area (Campiglia Marittima, Tuscany, Italy)". Quaternary International. 156–157 (1): 70–78. Bibcode:2006QuInt.156...70B. doi:10.1016/j.quaint.2006.05.033.
  4. Bokhorst, M.P., Duller, G.A.T., Van Mourik, J.M. (2005). "Optical dating of a Fimic Anthrosol in the southern Netherlands". Journal of Archaeological Science. 32 (4): 547–553. Bibcode:2005JArSc..32..547B. doi:10.1016/j.jas.2003.11.011.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Wei, C., Ni, J., Gao, M., Xie, D., and Hasegawa S. (2006). "Anthropic pedogenesis of purple rock fragments in Sichuan Basin, China". Catena. 68 (1): 51–58. Bibcode:2006Caten..68...51W. doi:10.1016/j.catena.2006.04.022.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. Scalenghe, R., Ferraris, S. (2009). "The first forty years of a Technosol". Pedosphere. 19: 40–52. doi:10.1016/S1002-0160(08)60082-X.{{cite journal}}: CS1 maint: multiple names: authors list (link)

Further reading