Alfisol | |
---|---|
Used in | USDA soil taxonomy |
Climate | various |
Alfisols are a soil order in USDA soil taxonomy. Alfisols form in semi-arid to humid areas, typically under a hardwood forest cover. They have a clay-enriched subsoil and relatively high native fertility. "Alf" refers to aluminium (Al) and iron (Fe). Because of their productivity and abundance, Alfisols represent one of the more important soil orders for food and fiber production. They are widely used both in agriculture and forestry, and are generally easier to keep fertile than other humid-climate soils, though those in Australia and Africa are still very deficient in nitrogen and available phosphorus. Those in monsoonal tropical regions, however, have a tendency to acidify when heavily cultivated, especially when nitrogenous fertilizers are used.
In the World Reference Base for Soil Resources (WRB), most Alfisols are classified as Luvisols or Lixisols, but some are classed as Retisols or Nitisols. Aqualfs are mainly Stagnosols or Planosols. Alfisols with a natric horizon are mainly Solonetz. [1]
Alfisols occupy around one-tenth of the Earth's ice-free land surface. They are dominant in many areas, such as the Ohio River basin in the United States, southern and unglaciated Western Europe, the Baltic region and central European Russia, the drier parts of Peninsular India, Sudan in Africa, and many parts of South America.
Alfisols have undergone only moderate leaching. By definition, they have at least 35% base saturation, meaning calcium, magnesium, and potassium are relatively abundant. This is in contrast to Ultisols, which are the more highly leached forest soils having less than 35% base saturation. In eastern North America, Alfisols are commonly found in glaciated areas while Ultisols are restricted to the areas south of the limit of maximum glaciation.
The fossil record of Alfisols begins in the Late Devonian. Probably owing to their fertility, they are the oldest forest soils; vegetation on weathered Oxisols, by contrast, is not known earlier than Middle Permian. Fossil Alfisols remain common from the Carboniferous and all periods since the Eocene.[ citation needed ]
The fossil record of Alfisols extends back to the Late Devonian. The Alfisol paleosols were woodland soils and early forest soils. The fertile Alfisols were most likely formed by Devonian forests. The oldest of the Alfisol paleosol forest soils are in the paleosols of the Aztec Siltstone in Victoria Land, Antarctica. In the paleosols of the Aztec Siltstone, the Rosemary paleosol, there is evidence for trees from surficial tree-throwing structures and large drab-haloed root tracers. From the fossil wood and spores found in the Aztec Siltstone, there is a strong indication that the trees were Archaeopteris-Callixylon. [2]
In upper New York State, there have been Devonian trees found in a large variety of paleosols. These Devonian trees help give clues as to what ecological tolerances for various early trees looked like. The paleosols associated with progymnosperm trunks are interpreted to not have grown in soils similar to the type of soils modern seed plants are grown in. The taxa of progymnosperm trunk fossils reproduced by spores. For reproduction, they were more dependent on moisture than modern seed plants. Comparing the Wattieza , from New York Devonian paleosols, and the Callixylon's ecotones to show this dependency on moisture it shows that the Wattieza lived in an ecotone of 571 ± 72 mm mean annual precipitation and the Callixylon lived in an ecotone of 611 ± 46 mean annual precipitation. Because the Callixylon grew taller than the Wattieza it is inferred it was because there was more mean annual moisture available to the Callixylon. [3]
In the lower Walton Formation, near Sidney, New York fossils of Archaeopteris macilenta , Callixylon zalesskyi, and Geminospora lemurata have been found. The tapering geometry of large woody root traces is the most likely cause of the intimate relationship between Argillic horizons, Alfisols, and forests. The large woody root traces can transport water and clay using their large pipes. They are very efficient at moving soil into a subsurface horizon when the plant dies and the roots decay. [4]
The Mata Amarilla Formation, a formation in the Austral Basin in southern Patagonia, Argentina is the location known for the preservation of podocarp-dominated fossil forests. In the eastern area of the middle section of the Mata Amarilla Formation, there are vertic Alfisols. In these Alfisols, there is a preservation of fossil forests, whose minimum age is 337 years. The fossil forests in this section are made up of in situ trunks. These trunks, in life position, have shallow root systems with well-developed horizontal roots, and have minimal development of vertical roots. A log of Podocarpxylon gargiae roots was found in the formation as well. The total mean diameter of these trees in the vertic Alfisol paleosol is greater than 60 cm and the smallest tree diameter is 26 cm. [5]
While Afisol paleosols are known for their woodland soils and fossils, there have also been other types of fossils found. The ichnofacies of the ground-nesting bees, Celliforma, was formed in well drained Alfisols as well as Aridisols and Oxisols. The Termitichnus ichnofacies, which included a large array of termite nests and pellets, is found in Oligocene Alfisols, Aridisols, and Oxisols. All the tetrapod bones and tracks from the paleosol sequences of Late Devonian and Mississippian of New York and Pennsylvania, U.S.A. are found in Aridisols and Alfisols. The Alfisols in the Texas High Plains have evidence for fossilized pollen and beetles. [6]
Oxisols are a soil order in USDA soil taxonomy, best known for their occurrence in tropical rain forest within 25 degrees north and south of the Equator. In the World Reference Base for Soil Resources (WRB), they belong mainly to the ferralsols, but some are plinthosols or nitisols. Some oxisols have been previously classified as laterite soils.
USDA soil taxonomy (ST) developed by the United States Department of Agriculture and the National Cooperative Soil Survey provides an elaborate classification of soil types according to several parameters and in several levels: Order, Suborder, Great Group, Subgroup, Family, and Series. The classification was originally developed by Guy Donald Smith, former director of the U.S. Department of Agriculture's soil survey investigations.
A polystrate fossil is a fossil of a single organism that extends through more than one geological stratum. The word polystrate is not a standard geological term. This term is typically found in creationist publications.
A ganister is hard, fine-grained quartzose sandstone, or orthoquartzite, used in the manufacture of silica brick typically used to line furnaces. Ganisters are cemented with secondary silica and typically have a characteristic splintery fracture.
Archaeopteris is an extinct genus of progymnosperm tree with fern-like leaves. A useful index fossil, this tree is found in strata dating from the Upper Devonian to Lower Carboniferous, the oldest fossils being 385 million years old, and had global distribution.
Ultisols, commonly known as red clay soils, are one of twelve soil orders in the United States Department of Agriculture soil taxonomy. The word "Ultisol" is derived from "ultimate", because Ultisols were seen as the ultimate product of continuous weathering of minerals in a humid, temperate climate without new soil formation via glaciation. They are defined as mineral soils which contain no calcareous material anywhere within the soil, have less than 10% weatherable minerals in the extreme top layer of soil, and have less than 35% base saturation throughout the soil. Ultisols occur in humid temperate or tropical regions. While the term is usually applied to the red clay soils of the Southern United States, Ultisols are also found in regions of Africa, Asia, and South America.
In the geosciences, paleosol is an ancient soil that formed in the past. The precise definition of the term in geology and paleontology is slightly different from its use in soil science.
Entisols are soils, as defined under USDA soil taxonomy, that do not show any profile development other than an A-horizon. Entisols have no diagnostic horizons, and are unaltered from their parent material, which could be unconsolidated sediment, or rock. Entisols are the most common soils, occupying about 16% of the global ice-free land area.
The paleopedological record is, essentially, the fossil record of soils. The paleopedological record consists chiefly of paleosols buried by flood sediments, or preserved at geological unconformities, especially plateau escarpments or sides of river valleys. Other fossil soils occur in areas where volcanic activity has covered the ancient soils.
An Acrisol is a Reference Soil Group of the World Reference Base for Soil Resources (WRB). It has a clay-rich subsoil and is associated with humid, tropical climates, such as those found in Brazil, and often supports forested areas. In the USDA soil taxonomy, Acrisols correspond to the Humult, Udult and Ustult suborders of the Ultisols and also to Oxisols with a kandic horizon and to some Alfisols. The Acrisols low fertility and toxic amounts of aluminium pose limitations to its agricultural use, favouring in many places its use for silviculture, low intensity pasture and protected areas. Crops that can be successfully cultivated, if climate allows, include tea, rubber tree, oil palm, coffee and sugar cane.
Paleopedology is the discipline that studies soils of past geological eras, from quite recent (Quaternary) to the earliest periods of the Earth's history. Paleopedology can be seen either as a branch of soil science (pedology) or of paleontology, since the methods it uses are in many ways a well-defined combination of the two disciplines.
The Tournaisian is in the ICS geologic timescale the lowest stage or oldest age of the Mississippian, the oldest subsystem of the Carboniferous. The Tournaisian age lasted from 358.9 Ma to 346.7 Ma. It is preceded by the Famennian and is followed by the Viséan. In global stratigraphy, the Tournaisian contains two substages: the Hastarian and Ivorian. These two substages were originally designated as European regional stages.
Wattieza was a genus of prehistoric trees that existed in the mid-Devonian that belong to the cladoxylopsids, close relatives of the modern ferns and horsetails. The 2005 discovery in Schoharie County, New York, of fossils from the Middle Devonian about 385 million years ago united the crown of Wattieza to a root and trunk known since 1870. The fossilized grove of "Gilboa stumps" discovered at Gilboa, New York, were described as Eospermatopteris, though the complete plant remained unknown. These fossils have been described as the earliest known trees, standing 8 m (26 ft) or more tall, resembling the unrelated modern tree fern.
The cladoxylopsids are an extinct group of plants related to ferns and sphenopsids.
The Crevasse Canyon Formation is a coal-bearing Cretaceous geologic formation in New Mexico and Arizona.
Gregory John Retallack is an Australian paleontologist, geologist, and author who specializes in the study of fossil soils (paleopedology). His research has examined the fossil record of soils though major events in Earth history, extending back some 4.6 billion years. Among his publications he has written two standard paleopedology textbooks, said N. Jones in Nature Geoscience "Retallack has literally written the book on ancient soils."
The Yahatinda Formation is a geologic formation of Middle Devonian (Givetian) age in the southwestern part of the Western Canada Sedimentary Basin in the mountains of southwestern Alberta. Its type locality lies the on the eastern face of Wapiti Mountain above Ya-Ha-Tinda Ranch at the eastern edge of Banff National Park. The Yahatinda contains a variety of Devonian fossils.
Archaeopteris macilenta is distinguished from other species of the genus by leaves which are divided into narrow segments at their tips. Sporangia were borne on different parts of the branches with ordinary foliage leaves. Archaeopteris macilenta leaves and fertile shoots are attached to wood which when permineralized is called Callixylon newberryi. Archaeopteris is retained in the class Progymnospermopsida which includes plants with gymnospermous anatomy and pteridophytic reproduction.
The Silurian-Devonian Terrestrial Revolution, also known as the Devonian Plant Explosion (DePE) and the Devonian explosion, was a period of rapid plant and fungal diversification that occurred 428 to 359 million years ago during the Silurian and Devonian, with the most critical phase occurring during the Late Silurian and Early Devonian. This diversification of terrestrial plant life had vast impacts on the biotic composition of earth's soil, its atmosphere, its oceans, and for all plant and animal life that would follow it. Through fierce competition for light and available space on land, phenotypic diversity of plants increased greatly, comparable in scale and effect to the explosion in diversity of animal life during the Cambrian explosion, especially in vertical plant growth, which allowed for photoautotrophic canopies to develop, and forever altering plant evolutionary floras that followed. As plants evolved and radiated, so too did arthropods, which formed symbiotic relationships with them. This Silurian and Devonian flora was significantly different in appearance, reproduction, and anatomy to most modern flora. Much of this flora had died out in extinction events including the Kellwasser Event, the Hangenberg Event, the Carboniferous Rainforest Collapse, and the End-Permian Extinction.
{{cite book}}
: CS1 maint: location missing publisher (link){{cite book}}
: CS1 maint: location missing publisher (link){{cite book}}
: CS1 maint: location missing publisher (link){{cite book}}
: CS1 maint: location missing publisher (link)