Hardwood

Last updated

Beech is a popular hardwood Fagus wood.jpg
Beech is a popular hardwood

Hardwood is wood from angiosperm trees. These are usually found in broad-leaved temperate and tropical forests. [1] In temperate and boreal latitudes they are mostly deciduous, but in tropics and subtropics mostly evergreen. Hardwood (which comes from angiosperm trees) contrasts with softwood (which is from gymnosperm trees).

Contents

Characteristics

SEM images showing the presence of pores in hardwoods (oak, top) and absence in softwoods (pine, bottom) Hard Soft Wood.jpg
SEM images showing the presence of pores in hardwoods (oak, top) and absence in softwoods (pine, bottom)

Hardwoods are produced by angiosperm trees that reproduce by flowers, and have broad leaves. Many species are deciduous. [2] Those of temperate regions lose their leaves every autumn as temperatures fall and are dormant in the winter, but those of tropical regions may shed their leaves in response to seasonal or sporadic periods of drought. Hardwood from deciduous species, such as oak, normally shows annual growth rings, but these may be absent in some tropical hardwoods. [3]

Hardwoods have a more complex structure than softwoods and are often much slower growing as a result. The dominant feature separating "hardwoods" from softwoods is the presence of pores, or vessels. [4] The vessels may show considerable variation in size, shape of perforation plates (simple, scalariform, reticulate, foraminate), and structure of cell wall, such as spiral thickenings.

As the name suggests, the wood from these trees is generally harder than that of softwoods, but there are significant exceptions. In both groups there is an enormous variation in actual wood hardness, with the range in density in hardwoods completely including that of softwoods; some hardwoods (e.g., balsa) are softer than most softwoods, while yew is an example of a hard softwood.

Chemistry

The structural polymers of hardwoods are cellulose, hemicellulose, and lignin. [5] The constituents of hardwood lignin differs from those included in softwood. Sinapyl alcohol and coniferyl alcohol are the main monomers of hardwood lignin. [6]

Hardwoods contain less amount of non-structural constituents, named extractives, than softwoods. [7] These extractives are usually categorized into three broad groups: aliphatic compounds, terpenes and phenolic compounds. Aliphatic compounds found in hardwoods include fatty acids, fatty alcohols and their esters with glycerol, fatty alcohols (waxes) and sterols (steryl esters), hydrocarbons, such as alkanes, sterols, such as sitosterol, sitostanol and campesterol. [8] The terpene content of the hardwood significantly differs from the softwood, and mainly consists of triterpenoids, polyprenols and other higher terpenes. Triterpenoids commonly purified from hardwoods include cycloartenol, betulin and squalene. Hardwood polyterpenes are rubber, gutta percha, gutta-balatá and betulaprenols. [7] [8] Although in small quantities, hardwoods also contain mono-, sesqui- and diterpenes, such as α- and β-pinenes, 3-carene, β-myrcene, limonene, hinokitiol, δ-cadinene, α- and δ-cadinols, borneol. Hardwood is rich in phenolic compounds, such as stilbenes, lignans, norlignans, tannins, flavonoids. [8]

Applications

Hardwoods are employed in a large range of applications, including fuel, tools, construction, boat building, furniture making, musical instruments, flooring, cooking, barrels, and manufacture of charcoal. Solid hardwood joinery tends to be expensive compared to softwood. In the past, tropical hardwoods were easily available, but the supply of some species, such as Burma teak and mahogany, is now becoming scarce due to over-exploitation. Cheaper "hardwood" doors, for instance, now consist of a thin veneer bonded to a core of softwood, plywood or medium-density fibreboard (MDF). Hardwoods may be used in a variety of objects, but are most frequently seen in furniture or musical instruments because of their density which adds to durability, appearance, and performance. Different species of hardwood lend themselves to different end uses or construction processes. This is due to the variety of characteristics apparent in different timbers, including density, grain, pore size, growth and fibre pattern, flexibility and ability to be steam bent. For example, the interlocked grain of elm wood (Ulmus spp.) makes it suitable for the making of chair seats where the driving in of legs and other components can cause splitting in other woods.[ citation needed ]

Cooking

There is a correlation between density and calories/volume. This makes the denser hardwoods like oak, cherry, and apple more suited for camp fires, cooking fires, and smoking meat, as they tend to burn hotter and longer than softwoods like pine or cedar whose low-density construction and highly-flammable pitch make them burn quickly and without producing quite as much heat.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Woodworking</span> Process of making objects from wood

Woodworking is the skill of making items from wood, and includes cabinetry, furniture making, wood carving, joinery, carpentry, and woodturning.

<span class="mw-page-title-main">Wood</span> Fibrous material from trees or other plants

Wood is a structural tissue found in the stems and roots of trees and other woody plants. It is an organic material – a natural composite of cellulose fibers that are strong in tension and embedded in a matrix of lignin that resists compression. Wood is sometimes defined as only the secondary xylem in the stems of trees, or more broadly to include the same type of tissue elsewhere, such as in the roots of trees or shrubs. In a living tree it performs a support function, enabling woody plants to grow large or to stand up by themselves. It also conveys water and nutrients between the leaves, other growing tissues, and the roots. Wood may also refer to other plant materials with comparable properties, and to material engineered from wood, woodchips, or fiber.

<span class="mw-page-title-main">Wax</span> Class of organic compounds which are malleable at room temperature

Waxes are a diverse class of organic compounds that are lipophilic, malleable solids near ambient temperatures. They include higher alkanes and lipids, typically with melting points above about 40 °C (104 °F), melting to give low viscosity liquids. Waxes are insoluble in water but soluble in nonpolar organic solvents such as hexane, benzene and chloroform. Natural waxes of different types are produced by plants and animals and occur in petroleum.

<span class="mw-page-title-main">Resin</span> Solid or highly viscous substance

In polymer chemistry and materials science, a resin is a solid or highly viscous substance of plant or synthetic origin that is typically convertible into polymers. Resins are usually mixtures of organic compounds. This article focuses mainly on naturally occurring resins.

<span class="mw-page-title-main">Plywood</span> Manufactured wood panel made from thin sheets of wood veneer

Plywood is a composite material manufactured from thin layers, or "plies", of wood veneer that are glued together with adjacent layers, having both glued with each other at right angle. It is an engineered wood from the family of manufactured boards, which include plywood, medium-density fibreboard (MDF), oriented strand board (OSB), and particle board.

<i>Ochroma</i> Genus of trees

Ochroma pyramidale, commonly known as the balsa tree, is a large, fast-growing tree native to the Americas. It is the sole member of the genus Ochroma. The tree is famous for its wide usage in woodworking, due to its softness and its high strength compared to its low density. The name balsa is the Spanish word for "raft."

<span class="mw-page-title-main">Lignin</span> Structural phenolic polymer in plant cell walls

Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidity and do not rot easily. Chemically, lignins are polymers made by cross-linking phenolic precursors.

Flooring is the general term for a permanent covering of a floor, or for the work of installing such a floor covering. Floor covering is a term to generically describe any finish material applied over a floor structure to provide a walking surface. Both terms are used interchangeably but floor covering refers more to loose-laid materials.

<span class="mw-page-title-main">Medium-density fibreboard</span> Engineered wood product

Medium-density fibreboard (MDF) is an engineered wood product made by breaking down hardwood or softwood residuals into wood fibre, often in a defibrator, combining it with wax and a resin binder, and forming it into panels by applying high temperature and pressure. MDF is generally denser than plywood. It is made up of separated fibre but can be used as a building material similar in application to plywood. It is stronger and denser than particle board.

<span class="mw-page-title-main">Softwood</span> Wood from gymnosperm trees such as conifers

Softwood is wood from gymnosperm trees such as conifers. The term is opposed to hardwood, which is the wood from angiosperm trees. The main differences between hardwoods and softwoods is that the structure of hardwoods lack resin canals, whereas softwoods lack pores.

<span class="mw-page-title-main">Pulpwood</span> Timber intended for processing into wood pulp for paper production

Pulpwood can be defined as timber that is ground and processed into a fibrous pulp. It is a versatile natural resource commonly used for paper-making but also made into low-grade wood and used for chips, energy, pellets, and engineered products.

<i>Thalictrum</i> Genus of flowering plants in the buttercup family Ranunculaceae

Thalictrum is a genus of 120-200 species of herbaceous perennial flowering plants in the buttercup family, Ranunculaceae, native mostly to temperate regions. Meadow-rue is a common name for plants in this genus.

Tall oil, also called liquid rosin or tallol, is a viscous yellow-black odorous liquid obtained as a by-product of the kraft process of wood pulp manufacture when pulping mainly coniferous trees. The name originated as an anglicization of the Swedish tallolja. Tall oil is the third largest chemical by-product in a kraft mill after lignin and hemicellulose; the yield of crude tall oil from the process is in the range of 30–50 kg / ton pulp. It may contribute to 1.0–1.5% of the mill's revenue if not used internally.

<span class="mw-page-title-main">Syringol</span> Chemical compound

Syringol is the organic compound with the formula HO(CH3O)2C6H3. The molecule is a phenol, with methoxy groups in the flanking (2 and 6) positions. It is the symmetrically dimethylated derivative of pyrogallol. It is a colorless solid, although typical samples are brown owing to air-oxidized impurities. Together with guaiacol, syringol and its derivatives are produced by the pyrolysis of lignin. Specifically, syringol is derived from the thermal decomposition of the sinapyl alcohol component. As such, syringol is an important component of wood smoke.

<span class="mw-page-title-main">Wood anatomy</span> Discipline of the xylem anatomy

Wood anatomy is a scientific sub-area of wood science, which examines the variations in xylem anatomical characteristics across trees, shrubs, and herbaceous species to explore inquiries related to plant function, growth, and the environment.

<span class="mw-page-title-main">Naturally occurring phenols</span> Group of chemical compounds

In biochemistry, naturally occurring phenols are natural products containing at least one phenol functional group. Phenolic compounds are produced by plants and microorganisms. Organisms sometimes synthesize phenolic compounds in response to ecological pressures such as pathogen and insect attack, UV radiation and wounding. As they are present in food consumed in human diets and in plants used in traditional medicine of several cultures, their role in human health and disease is a subject of research. Some phenols are germicidal and are used in formulating disinfectants.

The wood industry or timber industry is the industry concerned with forestry, logging, timber trade, and the production of primary forest products and wood products and secondary products like wood pulp for the pulp and paper industry. Some of the largest producers are also among the biggest owners of forest. The wood industry has historically been and continues to be an important sector in many economies.

The term "lignin characterization" refers to a group of activities within lignin research aiming at describing the characteristics of a lignin by determination of its most important properties. Most often, this term is used to describe the characterization of technical lignins by means of chemical or thermo-chemical analysis. Technical lignins are lignins isolated from various biomasses during various kinds of technical processes such as wood pulping. The most common technical lignins include lignosulphonates, kraft lignins, organosolv lignins, soda lignins and lignin residue after enzymatic treatment of biomass.

<span class="mw-page-title-main">Isoarborinol</span> Chemical compound

Isoarborinol is a triterpenoid ubiquitously produced by angiosperms and is thus considered a biomarker for higher plants. Though no isoarborinol-producing microbe has been identified, isoarborinol is also considered a possible biomarker for marine bacteria, as its diagenetic end product, arborane, has been found in ancient marine sediments that predate the rise of plants. Importantly, isoarborinol may represent the phylogenetic link between hopanols and sterols.

<span class="mw-page-title-main">Sugiol</span> Chemical compound

Sugiol is a phenolic abietane derivative of ferruginol and can be used as a biomarker for specific families of conifers. The presence of sugiol can be used to identify the Cupressaceae s.1., podocarpaceae, and Araucaraiaceae families of conifers. The polar terpenoids are among the most resistant molecules to degradation besides n-alkanes and fatty acids, affording them high viability as biomarkers due to their longevity in the sedimentary record. Significant amounts of sugiol has been detected in fossil wood dated to the Eocene and Miocene periods, as well as a sample of Protopodocarpoxylon dated to the middle Jurassic.

References

  1. John N. Owens; H. Gyde Lund (2009). Forests And Forest Plants – Volume II. EOLSS Publications. p. 134. ISBN   978-1-905839-39-1. Extract of page 134
  2. Nix, Steve (December 20, 2022) [Originally published April 22, 2021]. "Identification of the Most Common Hardwoods". Treehugger. Retrieved June 4, 2024.
  3. MinuteEarth (October 9, 2020). "Why Hardwoods Are The Softest Woods". YouTube. Archived from the original on 2021-12-21.
  4. CRC Handbook of Materials Science, Vol IV, pg 15
  5. Ansell, Martin P. (2015). "Chapter 11: Preservation, Protection and Modification of Wood Composites". Woodhead Publishing Series in Composites Science and Engineering: Number 54. Wood Composites. Cambridge, UK: Woodhead Publishing. ISBN   978-1-78242-454-3.
  6. Boerjan, Wout; Ralph, John; Baucher, Marie (June 2003). "Ligninbiosynthesis". Annual Review of Plant Biology. 54 (1): 519–546. doi:10.1146/annurev.arplant.54.031902.134938. PMID   14503002.
  7. 1 2 Ek, Monica; Gellerstedt, Göran; Henriksson, Gunnar (2009). "Chapter 7: Wood extractives". Pulp and Paper Chemistry and Technology. Volume 1, Wood Chemistry and Wood Biotechnology. Berlin: Walter de Gruyter. ISBN   978-3-11-021339-3.
  8. 1 2 3 Sjöström, Eero (October 22, 2013). "Chapter 5: Extractives". Wood Chemistry: Fundamentals and Applications (Second ed.). San Diego: Elsevier Science. ISBN   978-0-08-092589-9.

Further reading