Particle board

Last updated
Particleboard with veneer Particleboard.jpg
Particleboard with veneer

Particle board, also known as particleboard or chipboard, is an engineered wood product, belonging to the wood-based panels, manufactured from wood chips and a synthetic, mostly formaldehyde based resin or other suitable binder, which is pressed under a hot press, batch- or continuous- type, and produced. [1] Particle board is often confused with oriented strand board (OSB, also known as flakeboard, or waferboard), a different type of fiberboard that uses machined wood flakes and offers more strength.

Contents

Characteristics

Cross section of a particle board Particle board-cross section scan.jpg
Cross section of a particle board

Particle board is cheaper, denser and more uniform than conventional wood and plywood and is substituted for them when cost is more important than strength and appearance. Particleboard can be made more appealing by painting or the use of wood veneers on visible surfaces. Though it is denser than conventional wood, it is the lightest and weakest type of fiberboard, except for insulation board. Medium-density fibreboard and hardboard, also called high-density fiberboard, are stronger and denser than particleboard. Different grades of particleboard have different densities, with higher density connoting greater strength and greater resistance to failure of screw fasteners.

A significant disadvantage of particleboard is its susceptibility to expansion and discoloration from moisture absorption, particularly when it is not covered with paint or another sealer. Therefore, it is rarely used outdoors or in places where there are high levels of moisture, except in bathrooms, kitchens and laundries, where it is commonly used as an underlayment shielded beneath a moisture resistant continuous sheet of vinyl flooring.

In dry environments, veneered particleboard is preferred over veneered plywood because of its stability, lower cost, and convenience.

History and development

The history of particleboard is unclear. The nineteenth century saw many attempts to make use of sawmill by-products, including sawdust and wood chips, by manufacturing composite boards; conceptual references to processes of manufacturing wood composites similar to particleboard date from 1887. [2] In 1935, Farley and Loetscher Manufacturing Co. became the first plant to manufacture particleboard. [3] A particleboard industry developed over the course of the 1940s. [4]

In 1932, Luftwaffe pilot and inventor Max Himmelheber patented a process for making particleboard without fully impregnating wood fibers with adhesive, distinguishing it from earlier wood composites. [5] This particleboard could be produced with waste products such as planer shavings, off-cuts or sawdust, hammer-milled into chips and bound together with a phenolic resin. Hammer-milling involves smashing material into smaller and smaller pieces until they can pass through a screen. Most early particleboard manufacturers used similar processes, though often with slightly different resins.

It was found that better strength, appearance and resin economy could be achieved by using more uniform, manufactured chips. Producers began processing solid birch, beech, alder, pine and spruce into consistent chips and flakes; these finer layers were then placed on the outside of the board, with its core composed of coarser, cheaper chips. This type of board is known as three-layer particleboard.

Jute-stick Particle board manufacturing process Particle board manufacturing process.jpg
Jute-stick Particle board manufacturing process

More recently,[ when? ] graded-density particleboard has also evolved. It contains particles that gradually become smaller as they get closer to the surface.

Manufacturing

Particleboard or chipboard is manufactured by mixing particles or flakes of wood or jute-stick together with a resin and forming the mixture into a sheet. The raw material is fed into a disc chipper with between four and sixteen radially arranged blades. The chips from disk chippers are more uniform in shape and size than from other types of wood chippers. The particles are then dried, and any oversize or undersized particles are screened out.

Resin is then sprayed as a fine mist onto the particles. Several types of resins are used in the process. [6] Amino-formaldehyde based resins are the best performing based on cost and ease of use. Urea melamine resins offer water resistance with more melamine offering higher resistance. It is typically used in external applications, with the coloured resin darkening the panel. To further enhance the panel properties, resorcinol resins can be mixed with phenolic resins, but that is more often used with marine plywood applications.

Panel production involves other chemicals including wax, dyes, wetting agents and release agents, to aid processing or make the final product resistant to water, fire or insects.

After the particles pass through a mist of resin sufficient to coat all surfaces, they are layered into a continuous carpet. This 'carpet' is then separated into discrete, rectangular 'blankets' which will be compacted in a cold press. A scale weighs the flakes, and they are distributed by rotating rakes. In graded-density particleboard, the flakes are spread by an air jet that throws finer particles further than coarse ones. Two such jets, reversed, allow the particles to build up from fine to coarse and back to fine.

The formed sheets are cold-compressed to reduce thickness and make them easier to transport. Later, they are compressed again, under pressures between 2 and 3 megapascals (290 and 440 psi) and temperatures between 140 and 220 °C (284 and 428 °F) to set and harden the glue. The entire process is controlled to ensure the correct size, density and consistency of the board.

The boards are then cooled, trimmed and sanded. They can then be sold as raw board or surface improved through the addition of a wood veneer or laminate surface.

Furniture design

Confirmat screws on particleboard, in which they were designed to hold. They are still widely used in particleboard furniture. Konfirmat.JPG
Confirmat screws on particleboard, in which they were designed to hold. They are still widely used in particleboard furniture.

Particle board has had a huge influence on furniture design. In the early 1950s, particle board kitchens started to come into use in furniture construction but, in many cases, it remained more expensive than solid wood. A particle board kitchen was only available to the very wealthy.[ citation needed ] Once the technology was more developed, particle board became cheaper.

Some large companies base their strategies around providing furniture at a low price. To do this, they use the least expensive materials possible. In almost all cases, this means particle board, medium-density fibreboard (MDF), or the like. However, in order to maintain a reputation for quality at low cost, manufacturers may use higher grades of particle board, e.g., higher density particle board, thicker particle board, or particle board using higher-quality resins. One may note the amount of sag in a shelf of a given width in order to draw the distinction.

In general, the much lower cost of sheet goods (particle board, medium density fiberboard, and other engineered wood products) has helped to displace solid wood from many cabinetry applications.

Safety

Safety concerns exist for both manufacturing and use. Fine dust and chemicals are released when particleboard is machined (e.g., sawing or routing). Occupational exposure limits exist in many countries recognizing the hazard of wood dusts. [7] Cutting particle board can release formaldehyde, carbon monoxide, hydrogen cyanide in the case of amino resins, and phenol in the case of phenol formaldehyde resins. [8]

The other safety concern is the slow release of formaldehyde over time. In 1984 concerns about the high indoor levels of formaldehyde in new manufactured homes led the United States Department of Housing and Urban Development to set construction standards. Particleboard (PB), medium-density fibreboard (MDF), oriented strand board (OSB), and laminated flooring have been major sources of formaldehyde emissions. In response to consumer and woodworker pressure on the industry, PB and MDF became available in "no added formaldehyde" (NAF) versions, but were not in common use as of 2015. Many other building materials such as furniture finish, carpeting and caulking give off formaldehyde, as well as urea-formaldehyde foam insulation, which is banned in Canada for installation in a residential closed cavity wall. [9] Formaldehyde is classified by the WHO as a known human carcinogen. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Formaldehyde</span> Organic compound (H–CHO); simplest aldehyde

Formaldehyde ( for-MAL-di-hide, fər-) (systematic name methanal) is an organic compound with the chemical formula CH2O and structure H−CHO, more precisely H2C=O. The compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde. It is stored as aqueous solutions (formalin), which consists mainly of the hydrate CH2(OH)2. It is the simplest of the aldehydes (R−CHO). As a precursor to many other materials and chemical compounds, in 2006 the global production of formaldehyde was estimated at 12 million tons per year. It is mainly used in the production of industrial resins, e.g., for particle board and coatings. Small amounts also occur naturally.

<span class="mw-page-title-main">Plywood</span> Manufactured wood panel made from thin sheets of wood veneer

Plywood is a composite material manufactured from thin layers, or "plies", of wood veneer that have been stacked and glued together. It is an engineered wood from the family of manufactured boards, which include plywood, medium-density fibreboard (MDF), oriented strand board (OSB), and particle board.

<span class="mw-page-title-main">Engineered wood</span> Range of derivative wood products engineered for uniform and predictable structural performance

Engineered wood, also called mass timber, composite wood, man-made wood, or manufactured board, includes a range of derivative wood products which are manufactured by binding or fixing the strands, particles, fibres, or veneers or boards of wood, together with adhesives, or other methods of fixation to form composite material. The panels vary in size but can range upwards of 64 by 8 feet and in the case of cross-laminated timber (CLT) can be of any thickness from a few inches to 16 inches (410 mm) or more. These products are engineered to precise design specifications, which are tested to meet national or international standards and provide uniformity and predictability in their structural performance. Engineered wood products are used in a variety of applications, from home construction to commercial buildings to industrial products. The products can be used for joists and beams that replace steel in many building projects. The term mass timber describes a group of building materials that can replace concrete assemblies.

<span class="mw-page-title-main">Oriented strand board</span> Engineered wood particle board

Oriented strand board (OSB) is a type of engineered wood, formed by adding adhesives and then compressing layers of wood strands (flakes) in specific orientations. It was invented by Armin Elmendorf in California in 1963. OSB may have a rough and variegated surface with the individual strips of around 2.5 cm × 15 cm, lying unevenly across each other, and is produced in a variety of types and thicknesses.

<span class="mw-page-title-main">Medium-density fibreboard</span> Engineered wood product

Medium-density fibreboard (MDF) is an engineered wood product made by breaking down hardwood or softwood residuals into wood fibre, often in a defibrator, combining it with wax and a resin binder, and forming it into panels by applying high temperature and pressure. MDF is generally denser than plywood. It is made up of separated fibre but can be used as a building material similar in application to plywood. It is stronger and denser than particle board.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Phenol formaldehyde resin</span> Chemical compound

Phenol formaldehyde resins (PF), also called phenolic resins or phenoplasts, are synthetic polymers obtained by the reaction of phenol or substituted phenol with formaldehyde. Used as the basis for Bakelite, PFs were the first commercial synthetic resins. They have been widely used for the production of molded products including billiard balls, laboratory countertops, and as coatings and adhesives. They were at one time the primary material used for the production of circuit boards but have been largely replaced with epoxy resins and fiberglass cloth, as with fire-resistant FR-4 circuit board materials.

<span class="mw-page-title-main">Lamination</span> Technique of fusing layers of material

Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materials, such as plastic. A laminate is a layered object or material assembled using heat, pressure, welding, or adhesives. Various coating machines, machine presses and calendering equipment are used.

Norbord Inc. was a Canadian company that manufactured wood-based panels and became the world's largest producer of oriented strand board (OSB). Norbord also manufactured particleboard, medium-density fibreboard (MDF) and related value-added products. Norbord had assets of approximately $1.7 billion and employs approximately 2,600 people at 17 plant locations in the United States, Canada and Europe.

Pressed wood, also known as presswood, is any engineered wood building and furniture construction material made from wood shavings and particles, sawdust or wood fibers bonded together with an adhesive under heat and pressure. This makes it different from densified wood, which is solid wood that has been compressed to increase its strength and possibly modify other properties.

<span class="mw-page-title-main">Hardboard</span> Type of fiberboard (engineered wood product)

Hardboard, also called high-density fiberboard (HDF), is a type of fiberboard, which is a pressed wood or engineered wood product. It is used in furniture and in the construction industry.

<span class="mw-page-title-main">Laminated veneer lumber</span> Engineered Wood Product used in wood frame construction

Laminated veneer lumber (LVL) is an engineered wood product that uses multiple layers of thin wood assembled with adhesives. It is typically used for headers, beams, rimboard, and edge-forming material. LVL offers several advantages over typical milled lumber: Made in a factory under controlled specifications, it is stronger, straighter, and more uniform. Due to its composite nature, it is much less likely than conventional lumber to warp, twist, bow, or shrink. LVL is a type of structural composite lumber, comparable to glued laminated timber (glulam) but with a higher allowable stress. A high performance more sustainable alternative to lumber, Laminated Veneer Lumber (LVL) beams, headers and columns are used in structural applications to carry heavy loads with minimum weight.

Urea-formaldehyde (UF), also known as urea-methanal, so named for its common synthesis pathway and overall structure, is a nontransparent thermosetting resin or polymer. It is produced from urea and formaldehyde. These resins are used in adhesives, plywood, particle board, medium-density fibreboard (MDF), and molded objects. In agriculture, urea-formaldehyde compounds are one of the most commonly used types of slow-release fertilizer.

<span class="mw-page-title-main">Kitchen cabinet</span> Kitchen furniture

Kitchen cabinets are the built-in furniture installed in many kitchens for storage of food, cooking equipment, and often silverware and dishes for table service. Appliances such as refrigerators, dishwashers, and ovens are often integrated into kitchen cabinetry. There are many options for cabinets available at present.

<span class="mw-page-title-main">Wood veneer</span> Thin slices of wood

In woodworking, veneers are derived from trees, they resemble actual wood, with each sheet of veneer having a distinct look. Unlike laminates, no two veneer sheets look the same. Veneer refers to thin slices of wood and sometimes bark that typically are glued onto core panels to produce flat panels such as doors, tops and panels for cabinets, parquet floors and parts of furniture. They are also used in marquetry. Plywood consists of three or more layers of veneer. Normally, each is glued with its grain at right angles to adjacent layers for strength. Veneer beading is a thin layer of decorative edging placed around objects, such as jewelry boxes. Veneer is also used to replace decorative papers in wood veneer high pressure laminate.

<span class="mw-page-title-main">Fiberboard</span> Engineered wood product made out of wood fibers

Fiberboard or fibreboard is a type of engineered wood product that is made out of wood fibers. Types of fiberboard include particle board or low-density fiberboard (LDF), medium-density fiberboard (MDF), and hardboard or high-density fiberboard (HDF).

Hexion Inc. or Hexion is a chemical company based in Columbus, Ohio. It produces thermoset resins and related technologies and specialty products.

Waferboard belongs to the subset of reconstituted wood panel products called flakeboards. It is a structural material made from rectangular wood flakes of controlled length and thickness bonded together with waterproof phenolic resin under extreme heat and pressure. The layers of flakes are not oriented, which makes it easier to manufacture. Waferboard is used as a material to build cheap furniture. This type of furniture is usually laminated.

Founded in 1873, the Dieffenbacher Group, located in Eppingen in the administrative district of Heilbronn in Baden-Württemberg, is a family-run enterprise in the field of mechanical engineering, plant systems engineering, and construction. They develop and manufacture press systems and complete production systems for the wood composites, automobile, aerospace and recycling industries. In addition, the company develops power plants and process equipment for energy generation and waste heat recovery.

<span class="mw-page-title-main">Natural Fibre Board</span>

Natural Fibre Board (NFB), or otherwise natural fibreboard or natural fiberboard, is a registered European trademark representing wood fibre boards produced without the use of binding agents, for instance, formaldehyde-based resins or other synthetic resins.

References

  1. "Wood based panel producers in Poland". sppd.pl.
  2. Katlan, Alexander W. (1994). "Early Wood-Fiber Panels: Masonite, Hardboard, and Lower-Density Boards". Journal of the American Institute for Conservation. 33 (3): 301–306. doi:10.2307/3179639. JSTOR   3179639.
  3. Bucher, Charles (2012). "Dating Twentieth-Century Buildings by Means of Construction Materials". APT Bulletin: The Journal of Preservation Technology. 43 (2/3): 75. JSTOR   23317191.
  4. Rowell M., Roger (2005). Handbook of Wood Chemistry and Wood Composites. Taylor and Francis Group. ISBN   978-1-4398-5381-8.
  5. "Wood-like mass and process for its production".
  6. Mantanis, George I.; Athanassiadou, Eleftheria Th.; Barbu, Marius C.; Wijnendaele, Kris (2018-03-15). "Adhesive systems used in the European particleboard, MDF and OSB industries". Wood Material Science & Engineering. 13 (2): 104–116. doi:10.1080/17480272.2017.1396622. ISSN   1748-0272.
  7. "Wood dust hazards" (PDF). UK HSE. Archived from the original (PDF) on 2009-12-29.
  8. McCann, Michael; Babin, Angela (1995). "Certified Master Woodworker". The University of Illinois at Chicago. Retrieved June 19, 2019.
  9. "Formaldehyde Factsheet" (webpage). Illinois Department of Public Health.
  10. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 88 (2006) Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol (pdf, html), WHO Press, 2006( English )
  11. "Particle Board Manufacturer | Buy Online Pre Laminated Particle Sheet". 2024-11-20. Retrieved 2024-11-30.