Plywood

Last updated
Softwood plywood made from spruce Spruce plywood.JPG
Softwood plywood made from spruce

Plywood is a material manufactured from thin layers or "plies" of wood veneer that are glued together with adjacent layers having their wood grain rotated up to 90 degrees to one another. It is an engineered wood from the family of manufactured boards which include medium-density fibreboard (MDF) and particle board (chipboard).

Contents

All plywoods bind resin and wood fibre sheets (cellulose cells are long, strong and thin) to form a composite material. This alternation of the grain is called cross-graining and has several important benefits: it reduces the tendency of wood to split when nailed at the edges; it reduces expansion and shrinkage, providing improved dimensional stability; and it makes the strength of the panel consistent across all directions. There is usually an odd number of plies, so that the sheet is balanced—this reduces warping. Because plywood is bonded with grains running against one another and with an odd number of composite parts, it has high stiffness perpendicular to the grain direction of the surface ply.

Smaller, thinner, and lower quality plywoods may only have their plies (layers) arranged at right angles to each other. Some better-quality plywood products will by design have five plies in steps of 45 degrees (0, 45, 90, 135, and 180 degrees), giving strength in multiple axes.

The word ply derives from the French verb plier, [1] "to fold", from the Latin verb plico, from the ancient Greek verb πλέκω. [2]

History

The ancient Egyptians and Greeks cut wood thinly and glued it together in layers with the grain in perpendicular directions, making a versatile building material. [3] In 1797 Samuel Bentham applied for patents covering several machines to produce veneers. In his patent applications, he described the concept of laminating several layers of veneer with glue to form a thicker piece – the first description of what we now call plywood. [4] Bentham was a British naval engineer with many shipbuilding inventions to his credit. Veneers at the time of Bentham were flat sawn, rift sawn or quarter sawn; i.e. cut along or across the log manually in different angles to the grain and thus limited in width and length.[ citation needed ]

About fifty years later Immanuel Nobel, father of Alfred Nobel, realized that several thinner layers of wood bonded together would be stronger than a single thick layer of wood. Understanding the industrial potential of laminated wood, he invented the rotary lathe. [5]

There is little record of the early implementation of the rotary lathe and the subsequent commercialization of plywood as we know it today, but in its 1870 edition, the French dictionary Robert describes the process of rotary lathe veneer manufacturing in its entry Déroulage. [6] One can thus presume that rotary lathe plywood manufacturer was an established process in France in the 1860s. Plywood was introduced into the United States in 1865 [7] and industrial production there started shortly after. In 1928, the first standard-sized 4 ft by 8 ft (1.2 m by 2.4 m) plywood sheets were introduced in the United States for use as a general building material. [4]

Artists use plywood as a support for easel paintings to replace traditional canvas or cardboard. Ready-made artist boards for oil painting in three-layered plywood (3-ply) were produced and sold in New York as early as 1880. [8]

Structural characteristics

A typical plywood panel has face veneers of a higher grade than the core veneers. The principal function of the core layers is to increase the separation between the outer layers where the bending stresses are highest, thus increasing the panel's resistance to bending. As a result, thicker panels can span greater distances under the same loads. In bending, the maximum stress occurs in the outermost layers, one in tension, the other in compression. Bending stress decreases from the maximum at the face layers to nearly zero at the central layer. Shear stress, by contrast, is higher in the center of the panel, and at the outer fibres. Within Europe basic plywood can be divided into three main categories: birch plywood (density approx. 680 kg/m3), mixed plywood (density approx. 620 kg/m3) and conifer plywoods (density 460-520 kg/m3). [9]

Types

Average-quality plywood with 'show veneer' Plywood.jpg
Average-quality plywood with 'show veneer'
High-quality concrete pouring plate in plywood Multiplex.png
High-quality concrete pouring plate in plywood
Birch plywood Birke Multiplex.JPG
Birch plywood

Different varieties of plywood exist for different applications:

Softwood plywood

Softwood plywood is usually made either of cedar, Douglas fir or spruce, pine, and fir (collectively known as spruce-pine-fir or SPF) or redwood and is typically used for construction and industrial purposes. [10]

The most common dimension is 1.2 by 2.4 metres (3 ft 11 in × 7 ft 10 in) or the slightly larger imperial dimension of 4 feet × 8 feet. Plies vary in thickness from 1.4 mm to 4.3 mm. The number of plies—which is always odd—depends on the thickness and grade of the sheet. Roofing can use the thinner 16-millimetre (58 in) plywood. Subfloors are at least 19 millimetres (34 in) thick, the thickness depending on the distance between floor joists. Plywood for flooring applications is often tongue and groove (T&G); This prevents one board from moving up or down relative to its neighbor, providing a solid-feeling floor when the joints do not lie over joists. T&G plywood is usually found in the 13-to-25-millimetre (12 to 1 in) range.

Hardwood plywood

Hardwood plywood is made out of wood from dicot trees (Oak, Beech and Mahogany) and used for demanding end uses. Hardwood plywood is characterized by its excellent strength, stiffness and resistance to creep. It has a high planar shear strength and impact resistance, which make it especially suitable for heavy-duty floor and wall structures. Oriented plywood construction has a high wheel-carrying capacity. Hardwood plywood has excellent surface hardness, and damage- and wear-resistance. [11]

Tropical plywood

Tropical plywood is made of mixed species of tropical timber. Originally from the Asian region, it is now also manufactured in African and South American countries. Tropical plywood is superior to softwood plywood due to its density, strength, evenness of layers, and high quality. It is usually sold at a premium in many markets if manufactured with high standards. Tropical plywood is widely used in the UK, Japan, United States, Taiwan, Korea, Dubai, and other countries worldwide. It is used for construction purposes in many regions due to its low cost. However, many countries' forests have been over-harvested, including the Philippines, Malaysia and Indonesia, largely due to the demand for plywood production and export. [12]

Aircraft plywood

De Havilland DH-98 Mosquito was made of curved and glued veneers De Havilland DH-98 Mosquito ExCC.jpg
De Havilland DH-98 Mosquito was made of curved and glued veneers

High-strength plywood, also known as aircraft plywood, is made from mahogany, spruce and/or birch using adhesives with an increased resistance to heat and humidity. It was used in the construction of air assault gliders during World War II and also several fighter aircraft, most notably the multi-role British Mosquito. Nicknamed "The Wooden Wonder" plywood was used for the wing surfaces, and also flat sections such as bulkheads and the webs of the wing spars. The fuselage had exceptional rigidity from the bonded ply-balsa-ply 'sandwich' of its monocoque shell; elliptical in cross-section, it was formed in two separate mirror-image halves, using curved moulds.

Structural aircraft-grade plywood is most commonly manufactured from African mahogany, spruce or birch veneers that are bonded together in a hot press over hardwood cores of basswood or poplar or from European Birch veneers throughout. Basswood is another type of aviation-grade plywood that is lighter and more flexible than mahogany and birch plywood but has slightly less[ citation needed ] structural strength. Aviation-grade plywood is manufactured to a number of specifications including those outlined since 1931 in the Germanischer Lloyd Rules for Surveying and Testing of Plywood for Aircraft and MIL-P-607, the latter of which calls for shear testing after immersion in boiling water for three hours to verify the adhesive qualities between the plies and meets specifications. Aircraft grade plywood is made from three or more plies of birch, as thin as 164 inch (0.40 mm) thick in total, and is extremely strong and light.

Howard Hughes' H-4 Hercules was constructed of plywood. The plane was built by the Hughes Aircraft Company employing a plywood-and-resin Duramold process. [13] The specialized wood veneer was made by Roddis Manufacturing in Marshfield, Wisconsin. [14]

Decorative plywood (overlaid plywood)

Usually faced with hardwood, including ash, oak, red oak, birch, maple, mahogany, shorea (often called lauan, meranti, or Philippine mahogany, though having no relation to true mahogany), rosewood, teak and a large number of other hardwoods.

Flexible plywood

Flexible plywood is designed for making curved parts, a practice which dates back to the 1850s in furniture making.[ citation needed ] At 38 inch (9.5 mm) thick, mahogany three-ply "wiggle board" or "bendy board" come in 4 by 8 feet (1.2 m × 2.4 m) sheets with a very thin cross-grain central ply and two thicker exterior plies, either long grain on the sheet, or cross grain. Wiggle board is often glued together in two layers once it is formed into the desired curve, so that the final shape will be stiff and resist movement. Often, decorative wood veneers are added as a surface layer.

In the United Kingdom single-ply sheets of veneer were used to make stove pipe hats in Victorian times, so flexible modern plywood is sometimes known there as "hatters ply",[ citation needed ] although the original material was not strictly plywood, but a single sheet of veneer.

Marine plywood

Marine plywood is manufactured from durable face and core veneers, with few defects so it performs longer in both humid and wet conditions and resists delaminating and fungal attack. Its construction is such that it can be used in environments where it is exposed to moisture for long periods. Each wood veneer will be from tropical hardwoods, have negligible core gap, limiting the chance of trapping water in the plywood and hence providing a solid and stable glue bond. It uses an exterior Weather and Boil Proof (WBP) glue similar to most exterior plywoods.

Marine plywood can be graded as being compliant with BS 1088, which is a British Standard for marine plywood and IS:710 is Bureau of Indian Standards (BIS) for marine grade plywood. There are few international standards for grading marine plywood and most of the standards are voluntary. Some marine plywood has a Lloyd's of London stamp that certifies it to be BS 1088 compliant. Some plywood is also labeled based on the wood used to manufacture it. Examples of this are Okoumé or Meranti.

Other plywoods

Other types of plywoods include fire-retardant, moisture-resistant, wire mesh, sign-grade, and pressure-treated. However, the plywood may be treated with various chemicals to improve the plywood's fireproofing. Each of these products is designed to fill a need in industry.

Baltic Birch plywood is a product of an area around the Baltic Sea. Originally manufactured for European cabinet makers but now popular in the United States as well. It is very stable composed of an inner void-free core of cross-banded birch plys with an exterior grade adhesive. The face veneers are thicker than traditional cabinet grade plywood.

Production

Logs for plywood construction in a plywood factory Sandakan Sabah Plywood-Factory-20a.jpg
Logs for plywood construction in a plywood factory

Plywood production requires a good log, called a peeler, which is generally straighter and larger in diameter than one required for processing into dimensioned lumber by a sawmill. The log is laid horizontally and rotated about its long axis while a long blade is pressed into it, causing a thin layer of wood to peel off (much as a continuous sheet of paper from a roll). An adjustable nosebar, which may be solid or a roller, is pressed against the log during rotation, to create a "gap" for veneer to pass through between the knife and the nosebar. The nosebar partly compresses the wood as it is peeled; it controls vibration of the peeling knife; and assists in keeping the veneer being peeled to an accurate thickness. In this way the log is peeled into sheets of veneer, which are then cut to the desired oversize dimensions, to allow it to shrink (depending on wood species) when dried. The sheets are then patched, graded, glued together and then baked in a press at a temperature of at least 140 °C (284 °F), and at a pressure of up to 1.9 MPa (280 psi) (but more commonly 200 psi) to form the plywood panel. The panel can then be patched, have minor surface defects such as splits or small knot holes filled, re-sized, sanded or otherwise refinished, depending on the market for which it is intended.

A plywood mill in Joensuu, Finland Joensuu plywood mill (1).jpg
A plywood mill in Joensuu, Finland

Plywood for indoor use generally uses the less expensive urea-formaldehyde glue, which has limited water resistance, while outdoor and marine-grade plywood are designed to withstand moisture, and use a water-resistant phenol-formaldehyde glue to prevent delamination and to retain strength in high humidity. [15]

The adhesives used in plywood have become a point of concern. Both urea formaldehyde and phenol formaldehyde are carcinogenic in very high concentrations. As a result, many manufacturers are turning to low formaldehyde-emitting glue systems, denoted by an "E" rating. Plywood produced to "E0" has effectively zero formaldehyde emissions. [16]

In addition to the glues being brought to the forefront, the wood resources themselves are becoming the focus of manufacturers, due in part to energy conservation, as well as concern for natural resources. There are several certifications available to manufacturers who participate in these programs. Programme for the Endorsement of Forest Certification (PEFC) Forest Stewardship Council (FSC), Leadership in Energy and Environmental Design (LEED), Sustainable Forestry Initiative (SFI), and Greenguard are all certification programs that ensure that production and construction practices are sustainable. Many of these programs offer tax benefits to both the manufacturer and the end user. [17]

Sizes

The most commonly used thickness range is from 18 to 3.0 inches (3.2 to 76.2 mm). The sizes of the most commonly used plywood sheets are 4 x 8 feet (1220 x 2440 mm) [18] which was first used by the Portland Manufacturing Company, who developed what we know of as modern veneer core plywood for the 1905 Portland World Fair. A common metric size for a sheet of plywood is 1200 x 2400 mm. 5 × 5 feet (1,500 × 1,500 mm) is also a common European size for Baltic birch ply, and aircraft ply. [19]

Sizes on specialised plywood for concrete-forming can range from 1564 to 1316 in (6 to 21 mm), and a multitude of formats exist, though 15 × 750 × 1,500 mm (.59in × 30 × 59 in) (19/32in × 2 ft-6in × 4 ft-11in) is very commonly used.

Aircraft plywood is available in thicknesses of 18 inch (3 mm) (3 ply construction) and upwards; typically aircraft plywood uses veneers of 0.5 mm (approx 1/64 in) thickness although much thinner veneers such as 0.1 mm are also used in construction of some of the thinner panels.

Grades

Grading rules differ according to the country of origin. The most popular standards are the British Standard (BS) and the American Standard (ASTM). Joyce (1970), however, list some general indication of grading rules: [20]

GradeDescription
AFace and back veneers practically free from all defects.
A/BFace veneers practically free from all defects. Reverse veneers with only a few small knots or discolorations.
A/BBFace as A but reverse side permitting jointed veneers, large knots, plugs, etc.
BBoth side veneers with only a few small knots or discolorations.
B/BBFace veneers with only a few small knots or discolorations. Reverse side permitting jointed veneers, large knots, plugs, etc.
BBBoth sides permitting jointed veneers, large knots, plugs, etc.
C/DFor structural plywood, this grade means that the face has knots and defects filled in and the reverse may have some that are not filled. Neither face is an appearance grade, nor are they sanded smooth. This grade is often used for sheathing the surfaces of a building prior to being covered with another product like flooring, siding, concrete, or roofing materials.
WGGuaranteed well glued only. All broken knots plugged.
XKnots, knotholes, cracks, and all other defects permitted.
WBPWeather and Boil Proof used in Marine Ply. Designation replaced by EN 314-3.

JPIC Standards

GradeDescription
BB/CCFace as BB, back as CC. BB as very little knots of less than 1/4 inches, slight discoloration, no decay, split and wormholes mended skillfully, matched colors, no blister, no wrinkle. Most popular choice for many applications like furniture, packing and construction.

Applications

Plywood is used in many applications that need high-quality, high-strength sheet material. Quality in this context means resistance to cracking, breaking, shrinkage, twisting and warping.

Exterior glued plywood is suitable for outdoor use, but because moisture affects the strength of wood, optimal performance is achieved where the moisture content remains relatively low. Subzero conditions do not affect the dimensional or strength properties of plywood, making some special applications possible.

Plywood is also used as an engineering material for stressed-skin applications. It has been used for marine and aviation applications since WWII. Most notable is the British de Havilland Mosquito bomber, with a fuselage made of birch plywood sandwiching a balsa core, and using plywood extensively for the wings. Plywood was also used for the hulls in the hard-chine Motor Torpedo Boats (MTB) and Motor Gun Boats (MGB) built by the British Power Boat Company and Vosper's. Plywood is currently successfully used in stressed-skin applications.[ citation needed ] The American designers Charles and Ray Eames are known for their plywood-based furniture, as is Finnish Architect Alvar Aalto and his firm Artek, while Phil Bolger has designed a wide range of boats built primarily of plywood. Jack Köper of Cape Town designed the plywood Dabchick sailing dinghy, which as of 2015 is still sailed by large numbers of teenagers.

Detrola Model 579 (1946) radio, made of plywood Detrola Model 579 (1946).jpg
Detrola Model 579 (1946) radio, made of plywood

Plywood is often used to create curved surfaces because it can easily bend with the grain. Skateboard ramps often utilize plywood as the top smooth surface over bent curves to create transition that can simulate the shapes of ocean waves.

Softwood plywood applications

Typical end uses of spruce plywood are:

There are coating solutions available that mask the prominent grain structure of spruce plywood. For these coated plywoods there are some end uses where reasonable strength is needed but the lightness of spruce is a benefit, e.g.:

Hardwood plywood applications

Phenolic resin film coated (Film Faced) plywood is typically used as a ready-to-install component e.g.:

("Wire" or other styles of imprinting available for better traction)

Birch plywood is used as a structural material in special applications e.g.:

Smooth surface and accurate thickness combined with the durability of the material makes birch plywood a favorable material for many special end uses e.g.:

Tropical plywood applications

Tropical plywood is widely available from the South-East Asia region, mainly from Malaysia and Indonesia.

Related Research Articles

Engineered wood Range of derivative wood products engineered for uniform and predictable structural performance

Engineered wood, also called mass timber, composite wood, man-made wood, or manufactured board, includes a range of derivative wood products which are manufactured by binding or fixing the strands, particles, fibres, or veneers or boards of wood, together with adhesives, or other methods of fixation to form composite material. The panels vary in size but can range upwards of 64 by 8 feet and in the case of cross-laminated timber (CLT) can be of any thickness from a few inches to 16 inches or more. These products are engineered to precise design specifications, which are tested to meet national or international standards and provide uniformity and predictability in their structural performance. Engineered wood products are used in a variety of applications, from home construction to commercial buildings to industrial products. The products can be used for joists and beams that replace steel in many building projects. The term mass timber describes a group of building materials that can replace concrete assemblies. Broad-base adoption of mass timber and their substitution for steel and concrete in new mid-rise construction projects over the next few decades has the potential of turning timber buildings into a global carbon sink, which could help mitigate climate change.

Oriented strand board Engineered wood particle board

Oriented strand board (OSB) is a type of engineered wood similar to particle board, formed by adding adhesives and then compressing layers of wood strands (flakes) in specific orientations. It was invented by Armin Elmendorf in California in 1963. OSB may have a rough and variegated surface with the individual strips of around 2.5 cm × 15 cm, lying unevenly across each other, and is produced in a variety of types and thicknesses.

Medium-density fibreboard

Medium-density fibreboard (MDF) is an engineered wood product made by breaking down hardwood or softwood residuals into wood fibres, often in a defibrator, combining it with wax and a resin binder, and forming it into panels by applying high temperature and pressure. MDF is generally more dense than plywood. It is made up of separated fibres, but can be used as a building material similar in application to plywood. It is stronger, and more dense, than particle board.

Boat building

Boat building is the design and construction of boats and their systems. This includes at a minimum a hull, with propulsion, mechanical, navigation, safety and other systems as a craft requires.

Particle board

Particle board, also known as chipboard, is an engineered wood product manufactured from wood chips or jute-stick chips and a synthetic resin or other suitable binder, which is pressed and extruded. Particle board is often confused with oriented strand board, a different type of fiberboard that uses machined wood flakes and offers more strength.

Laminated veneer lumber

Laminated veneer lumber (LVL) is an engineered wood product that uses multiple layers of thin wood assembled with adhesives. It is typically used for headers, beams, rimboard, and edge-forming material. LVL offers several advantages over typical milled lumber: Made in a factory under controlled specifications, it is stronger, straighter, and more uniform. Due to its composite nature, it is much less likely than conventional lumber to warp, twist, bow, or shrink. LVL is a type of structural composite lumber, comparable to Glued laminated timber (Glulam) but with a higher allowable stress.

Frame and panel

Frame and panel construction, also called rail and stile, is a woodworking technique often used in the making of doors, wainscoting, and other decorative features for cabinets, furniture, and homes. The basic idea is to capture a 'floating' panel within a sturdy frame, as opposed to techniques used in making a slab solid wood cabinet door or drawer front, the door is constructed of several solid wood pieces running in a vertical or horizontal direction with exposed endgrains. Usually, the panel is not glued to the frame but is left to 'float' within it so that seasonal movement of the wood comprising the panel does not distort the frame.

Kitchen cabinet

Kitchen cabinets are the built-in furniture installed in many kitchens for storage of food, cooking equipment, and often silverware and dishes for table service. Appliances such as refrigerators, dishwashers, and ovens are often integrated into kitchen cabinetry. There are many options for cabinets available at present.

Upholstery frame

In furniture-making, the upholstery frame of a piece of furniture gives the structural support and determines the basic shape of the upholstered furniture. The frame may be a basic piece of wooden furniture prior to its being upholstered. Like a finished piece of furniture prior to the upholstering, the frame establishes the final quality, including its durability, and sets limits upon the final design, padding, cushioning, or cover.

Wood veneer Thin slices of wood glued to create flat panels

In woodworking, veneer refers to thin slices of wood and sometimes bark, usually thinner than 3 mm, that typically are glued onto core panels to produce flat panels such as doors, tops and panels for cabinets, parquet floors and parts of furniture. They are also used in marquetry. Plywood consists of three or more layers of veneer. Normally, each is glued with its grain at right angles to adjacent layers for strength. Veneer beading is a thin layer of decorative edging placed around objects, such as jewelry boxes. Veneer is also used to replace decorative papers in Wood Veneer HPL. Veneer is also a type of manufactured board.

Wood glue is an adhesive used to tightly bond pieces of wood together. Many substances have been used as glues.

In materials, BS 1088 is the British Standard specification for marine plywood that applies to plywood produced with untreated tropical hardwood veneers that have a set level of resistance to fungal attack. The plies are bonded with Weather Boil Proof (WBP) glue.

Wood flooring

Wood flooring is any product manufactured from timber that is designed for use as flooring, either structural or aesthetic. Wood is a common choice as a flooring material and can come in various styles, colors, cuts, and species. Bamboo flooring is often considered a form of wood flooring, although it is made from a grass (bamboo) rather than a timber.

Cross-laminated timber Wood panel product made from solid-sawn lumber

Cross-laminated timber (CLT) is a wood panel product made from gluing together layers of solid-sawn lumber, i.e., lumber cut from a single log. Each layer of boards is usually oriented perpendicular to adjacent layers and glued on the wide faces of each board, usually in a symmetric way so that the outer layers have the same orientation. An odd number of layers is most common, but there are configurations with even numbers as well. Regular timber is an anisotropic material, meaning that the physical properties change depending on the direction at which the force is applied. By gluing layers of wood at right angles, the panel is able to achieve better structural rigidity in both directions. It is similar to plywood but with distinctively thicker laminations.

Laminate panel is a type of manufactured timber made from thin sheets of substrates or wood veneer. It is similar to the more widely used plywood, except that it has a plastic, protective layer on one or both sides. Laminate panels are used instead of plywood because of their resistance to impact, weather, moisture, shattering in cold (ductility), and chemicals.

Flexible stone veneer

Flexible stone veneer is a veneer with a layer of stone 1 to 5 mm thick. Flexible stone veneers should not be confused with traditional stone veneer. It is used for both interior and exterior and especially where bending to a curved surface is required. Flexible stone veneers are made from various types of slate, schist, or marble.

Molded plywood

Molded plywood is the term for two- or three-dimensionally shaped products from multiple veneer layers that are glued together through heat and pressure in a pressing tool. The veneer layers are arranged crosswise at an angle of 90 degrees. Molded wood is used for flat furniture components such as seats, backrests and seat shells. When the veneer layers are arranged in the same direction, it is called laminated wood. It is used for armrests and chair frames. After pressing, the blanks are processed mechanically. A particular feature is the ability to produce different variations of shapes from the blanks. Due to its immense strength and low weight, molded wood is particularly suitable for interior decoration, seating furniture, bed slats, skateboards and vehicle construction.

Haskell canoe

The Haskell canoe was a boat built by the Haskell Boat Company in Ludington, Michigan. It was made with a single sheet of three-ply lightweight waterproof plywood. It was marketed throughout the United States and Canada. Peak production of the canoe occurred during the 1920s. The length was extended in 1930 and by 1934 it was no longer made.

Haskelite

Haskelite is the brand name of a plywood, once made by the Michigan-based Haskelite Manufacturing Corporation. It was made from waterproof glue developed by Henry L. Haskell. The moldable plywood was originally called Ser-O-Ply. It was used in the construction of various vehicles including military tanks, boats, airplanes, buses, trucks, and automobiles. The plywood was manufactured with different characteristics depending on particular needs and then given a brand name.

Haskell Manufacturing Company

The Haskell Manufacturing Company was a manufacturing company. It was located on Rowe Street about a mile north of downtown Ludington, Michigan. Their main product was haskelite, a plywood made from a waterproof glue developed by Henry L. Haskell in the early 1900s. The plywood was veneer wood panels of different thicknesses and was used to make novelty items, furniture, and paneling for construction. The thinner plywood was molded into shapes for body parts of airplanes and transportation vehicles. It was manufactured with different styles and types to fit particular needs.

References

  1. Collins Dictionary of the English Language, 2nd Edition, London, 1986, p.1181
  2. Cassell's Latin Dictionary, Marchant, J.R.V, & Charles, Joseph F., (Eds.), Revised Edition, 1928, p.421
  3. O'Halloran, M.R., "Wood: Structural Panels"; pp. 917-921 in Andreas Mortensen, ed., Concise Encyclopedia of Composite Materials, Elsevier, 2006.
  4. 1 2 "Plywood". Gale's How Products are Made. The Gale Group Inc. Retrieved 26 November 2013.
  5. "Nobel Plywood" . Retrieved 2018-04-03.
  6. "Dérouler". Le Robert Historique de la langue française. Dictionnaires Robert. Retrieved 26 November 2013.
  7. "Plywood". Columbia Encyclopedia. Retrieved 26 November 2013.
  8. Muller, Norman E. (1992). "An early example of a plywood support for painting". Journal of the American Institute for Conservation. 31 (2): 257–260. doi:10.2307/3179496. JSTOR   3179496.
  9. https://www.woodproducts.fi/content/plywood
  10. O'Halloran, p. 221.
  11. Handbook of Finnish plywood, Finnish Forest Industries Federation, 2002, ISBN   952-9506-63-5 "Archived copy" (PDF). Archived from the original (PDF) on 2007-09-27. Retrieved 2007-09-27.CS1 maint: archived copy as title (link)
  12. "Lauan (Shorea spp.)". www.rainforestrelief.org. Retrieved 2019-11-15.
  13. Winchester, Jim. "Hughes H-4 'Spruce Goose'." Concept Aircraft: Prototypes, X-Planes and Experimental Aircraft. Kent, UK: Grange Books plc., 2005. ISBN   978-1-59223-480-6 p. 113.
  14. Marshfield women recall building engineering marvels of the skies Archived 2014-12-17 at the Wayback Machine , Marshfield News Herald
  15. https://goldwoodply.com/boat.php
  16. Engineered Wood Products Association of Australasia. (PDF). Retrieved on 2012-02-10.
  17. Pro Woodworking Tips.com Archived 2010-10-05 at the Wayback Machine . Pro Woodworking Tips.com. Retrieved on 2012-02-10.
  18. https://goldwoodply.com/goldwood.php
  19. Metric conversions, Canadian government publication Archived 2010-02-16 at the Wayback Machine . (PDF). Retrieved on 2012-02-10.
  20. Joyce, Ernes. 1970. The Technique of Furniture Making. London: B. T. Batsford Limited.