Delamination

Last updated
Delamination of carbon fiber-reinforced polymer under compression load Delamination-CFRP.jpg
Delamination of carbon fiber–reinforced polymer under compression load

Delamination is a mode of failure where a material fractures into layers. A variety of materials, including laminate composites [1] and concrete, can fail by delamination. Processing can create layers in materials, such as steel formed by rolling [2] [3] and plastics and metals from 3D printing [4] [5] which can fail from layer separation. Also, surface coatings, such as paints and films, can delaminate from the coated substrate.

Contents

In laminated composites, the adhesion between layers often fails first, causing the layers to separate. [6] For example, in fiber-reinforced plastics, sheets of high strength reinforcement (e.g., carbon fiber, fiberglass) are bound together by a much weaker polymer matrix (e.g., epoxy). In particular, loads applied perpendicular to the high strength layers, and shear loads can cause the polymer matrix to fracture or the fiber reinforcement to debond from the polymer.

Delamination also occurs in reinforced concrete when metal reinforcements near the surface corrode. [7] The oxidized metal has a larger volume causing stresses when confined by the concrete. When the stresses exceed the strength of the concrete, cracks can form and spread to join with neighboring cracks caused by corroded rebar creating a fracture plane that runs parallel to the surface. Once the fracture plane has developed, the concrete at the surface can separate from the substrate.

Processing can create layers in materials which can fail by delamination. In concrete, surfaces can flake off from improper finishing. If the surface is finished and densified by troweling while the underlying concrete is bleeding water and air, the dense top layer may separate from the water and air pushing upwards. [8] In steels, rolling can create a microstructure when the microscopic grains are oriented in flat sheets which can fracture into layers. [2] Also, certain 3D printing methods (e.g., Fused Deposition) builds parts in layers that can delaminate during printing or use. When printing thermoplastics with fused deposition, cooling a hot layer of plastic applied to a cold substrate layer can cause bending due to differential thermal contraction and layer separation. [4]

Inspection methods

There are multiple nondestructive testing methods to detect delamination in structures including visual inspection, tap testing (i.e. sounding), ultrasound, radiography, and infrared imaging.

Visual inspection is useful for detecting delaminations at the surface and edges of materials. However, a visual inspection may not detect delamination within a material without cutting the material open.

Tap testing or sounding involves gently striking the material with a hammer or hard object to find delamination based on the resulting sound. In laminated composites, a clear ringing sound indicates a well bonded material whereas a duller sound indicates the presence of delamination due to the defect dampening the impact. [9] Tap testing is well suited for finding large defects in flat panel composites with a honeycomb core whereas thin laminates may have small defects that are not discernible by sound. [10] Using sound is also subjective and dependent on the inspector's quality of hearing as well as judgement. Any intentional variations in the part may also change the pitch of the produced sound, influencing the inspection. Some of these variations include ply overlaps, ply count change gores, core density change (if used), and geometry.

In reinforced concretes intact regions will sound solid whereas delaminated areas will sound hollow. [11] Tap testing large concrete structures is carried about either with a hammer or with a chain dragging device for horizontal surfaces like bridge decks. Bridge decks in cold climate countries which use de-icing salts and chemicals are commonly subject to delamination and as such are typically scheduled for annual inspection by chain-dragging as well as subsequent patch repairs of the surface. [12]

Delamination resistance testing methods

Coating delamination tests

ASTM provides standards for paint adhesion testing which provides qualitative measures for paints and coatings resistance to delamination from substrates. Tests include cross-cut test, scrape adhesion, [13] and pull-off test. [14]

Interlaminar fracture toughness testing

Fracture toughness is a material property that describes resistance to fracture and delamination. It is denoted by critical stress intensity factor or critical strain energy release rate . [15] For unidirectional fiber reinforced polymer laminate composites, ASTM provides standards for determining mode I fracture toughness and mode II fracture toughness of the interlaminar matrix. [16] [17] During the tests load and displacement is recorded for analysis to determine the strain energy release rate from the compliance method. in terms of compliance is given by

(1)

where is the change in compliance (ratio of ), is the thickness of the specimen, and is the change in crack length.

Mode I interlaminar fracture toughness

Schematic of deformed double cantilever beam specimen. Double Cantilever Beam Specimen Deformed Schematic.svg
Schematic of deformed double cantilever beam specimen.

ASTM D5528 specifies the use of the double cantilever beam (DCB) specimen geometry for determining mode I interlaminar fracture toughness. [17] A double cantilever beam specimen is created by placing a non-stick film between reinforcement layers in the center of the beam before curing the polymer matrix to create an initial crack of length . During the test the specimen is loaded in tension from the end of the initial crack side of the beam opening the crack. Using the compliance method, the critical strain energy release rate is given by

(2)

where and are the maximum load and displacement respectively by determining when the load deflection curve has become nonlinear with a line drawn from the origin with a 5% increase in compliance. Typically, equation 2 overestimates the fracture toughness because the two cantilever beams of the DCB specimen will have a finite rotation at the crack. The finite rotation can be corrected for by calculating with a slightly longer crack with length giving

(3)

The crack length correction can be calculated experimentally by plotting the least squares fit of the cube root of the compliance vs. crack length . The correction is the absolute value of the x intercept. Fracture toughness can also be corrected with the compliance calibration method where given by

(4)

where is the slope of the least squares fit of vs. .

Mode II interlaminar fracture toughness

Schematic of edge notch flexure test. Edge Notch Flexure Schematic Test PNG.png
Schematic of edge notch flexure test.

Mode II interlaminar fracture toughness can be determined by an edge notch flexure test specified by ASTM D7905. [16] The specimen is prepared in a similar manner as the DCB specimen introducing an initial crack with length before curing the polymer matrix. If the test is performed with the initial crack (non-precracked method) the candidate fracture toughness is given by

where is the thickness of the specimen and is the max load and is a fitting parameter. is determined by experimental results with a least squares fit of compliance vs. the crack length cubed with the form of

.

The candidate fracture toughness equals the mode II fracture toughness if strain energy release rate falls within certain percentage of at different crack lengths specified by ASTM.

Related Research Articles

<span class="mw-page-title-main">Fracture</span> Split of materials or structures under stress

Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band, or dislocation.

<span class="mw-page-title-main">Fatigue (material)</span> Initiation and propagation of cracks in a material due to cyclic loading

In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface. The crack will continue to grow until it reaches a critical size, which occurs when the stress intensity factor of the crack exceeds the fracture toughness of the material, producing rapid propagation and typically complete fracture of the structure.

<span class="mw-page-title-main">Fracture mechanics</span> Study of propagation of cracks in materials

Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.

Thermal shock is a phenomenon characterized by a rapid change in temperature that results in a transient mechanical load on an object. The load is caused by the differential expansion of different parts of the object due to the temperature change. This differential expansion can be understood in terms of strain, rather than stress. When the strain exceeds the tensile strength of the material, it can cause cracks to form and eventually lead to structural failure.

<span class="mw-page-title-main">Fracture toughness</span> Stress intensity factor at which a cracks propagation increases drastically

In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.

<span class="mw-page-title-main">Three-point flexural test</span> Standard procedure for measuring modulus of elasticity in bending

The three-point bending flexural test provides values for the modulus of elasticity in bending , flexural stress , flexural strain and the flexural stress–strain response of the material. This test is performed on a universal testing machine with a three-point or four-point bend fixture. The main advantage of a three-point flexural test is the ease of the specimen preparation and testing. However, this method has also some disadvantages: the results of the testing method are sensitive to specimen and loading geometry and strain rate.

<span class="mw-page-title-main">Filler (materials)</span> Particles added to improve its properties

Filler materials are particles added to resin or binders that can improve specific properties, make the product cheaper, or a mixture of both. The two largest segments for filler material use is elastomers and plastics. Worldwide, more than 53 million tons of fillers are used every year in application areas such as paper, plastics, rubber, paints, coatings, adhesives, and sealants. As such, fillers, produced by more than 700 companies, rank among the world's major raw materials and are contained in a variety of goods for daily consumer needs. The top filler materials used are ground calcium carbonate (GCC), precipitated calcium carbonate (PCC), kaolin, talc, and carbon black. Filler materials can affect the tensile strength, toughness, heat resistance, color, clarity, etc. A good example of this is the addition of talc to polypropylene. Most of the filler materials used in plastics are mineral or glass based filler materials. Particulates and fibers are the main subgroups of filler materials. Particulates are small particles of filler that are mixed in the matrix where size and aspect ratio are important. Fibers are small circular strands that can be very long and have very high aspect ratios.

Methods have been devised to modify the yield strength, ductility, and toughness of both crystalline and amorphous materials. These strengthening mechanisms give engineers the ability to tailor the mechanical properties of materials to suit a variety of different applications. For example, the favorable properties of steel result from interstitial incorporation of carbon into the iron lattice. Brass, a binary alloy of copper and zinc, has superior mechanical properties compared to its constituent metals due to solution strengthening. Work hardening has also been used for centuries by blacksmiths to introduce dislocations into materials, increasing their yield strengths.

Rubber toughening is a process in which rubber nanoparticles are interspersed within a polymer matrix to increase the mechanical robustness, or toughness, of the material. By "toughening" a polymer it is meant that the ability of the polymeric substance to absorb energy and plastically deform without fracture is increased. Considering the significant advantages in mechanical properties that rubber toughening offers, most major thermoplastics are available in rubber-toughened versions; for many engineering applications, material toughness is a deciding factor in final material selection.

In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture. Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, and is thus expressed in terms of energy per unit area. Various energy balances can be constructed relating the energy released during fracture to the energy of the resulting new surface, as well as other dissipative processes such as plasticity and heat generation. The energy release rate is central to the field of fracture mechanics when solving problems and estimating material properties related to fracture and fatigue.

The wafer bond characterization is based on different methods and tests. Considered a high importance of the wafer are the successful bonded wafers without flaws. Those flaws can be caused by void formation in the interface due to unevenness or impurities. The bond connection is characterized for wafer bond development or quality assessment of fabricated wafers and sensors.

Polymer fracture is the study of the fracture surface of an already failed material to determine the method of crack formation and extension in polymers both fiber reinforced and otherwise. Failure in polymer components can occur at relatively low stress levels, far below the tensile strength because of four major reasons: long term stress or creep rupture, cyclic stresses or fatigue, the presence of structural flaws and stress-cracking agents. Formations of submicroscopic cracks in polymers under load have been studied by x ray scattering techniques and the main regularities of crack formation under different loading conditions have been analyzed. The low strength of polymers compared to theoretically predicted values are mainly due to the many microscopic imperfections found in the material. These defects namely dislocations, crystalline boundaries, amorphous interlayers and block structure can all lead to the non-uniform distribution of mechanical stress.

Crack closure is a phenomenon in fatigue loading, where the opposing faces of a crack remain in contact even with an external load acting on the material. As the load is increased, a critical value will be reached at which time the crack becomes open. Crack closure occurs from the presence of material propping open the crack faces and can arise from many sources including plastic deformation or phase transformation during crack propagation, corrosion of crack surfaces, presence of fluids in the crack, or roughness at cracked surfaces.

In materials modeled by linear elastic fracture mechanics (LEFM), crack extension occurs when the applied energy release rate exceeds , where is the material's resistance to crack extension.

<span class="mw-page-title-main">Crack tip opening displacement</span>

Crack tip opening displacement (CTOD) or is the distance between the opposite faces of a crack tip at the 90° intercept position. The position behind the crack tip at which the distance is measured is arbitrary but commonly used is the point where two 45° lines, starting at the crack tip, intersect the crack faces. The parameter is used in fracture mechanics to characterize the loading on a crack and can be related to other crack tip loading parameters such as the stress intensity factor and the elastic-plastic J-integral.

A void or a pore is three-dimensional region that remains unfilled with polymer and fibers in a composite material. Voids are typically the result of poor manufacturing of the material and are generally deemed undesirable. Voids can affect the mechanical properties and lifespan of the composite. They degrade mainly the matrix-dominated properties such as interlaminar shear strength, longitudinal compressive strength, and transverse tensile strength. Voids can act as crack initiation sites as well as allow moisture to penetrate the composite and contribute to the anisotropy of the composite. For aerospace applications, a void content of approximately 1% is still acceptable, while for less sensitive applications, the allowance limit is 3-5%. Although a small increase in void content may not seem to cause significant issues, a 1-3% increase in void content of carbon fiber reinforced composite can reduce the mechanical properties by up to 20%

In materials science, toughening refers to the process of making a material more resistant to the propagation of cracks. When a crack propagates, the associated irreversible work in different materials classes is different. Thus, the most effective toughening mechanisms differ among different materials classes. The crack tip plasticity is important in toughening of metals and long-chain polymers. Ceramics have limited crack tip plasticity and primarily rely on different toughening mechanisms.

Welding of advanced thermoplastic composites is a beneficial method of joining these materials compared to mechanical fastening and adhesive bonding. Mechanical fastening requires intense labor, and creates stress concentrations, while adhesive bonding requires extensive surface preparation, and long curing cycles. Welding these materials is a cost-effective method of joining concerning preparation and execution, and these materials retain their properties upon cooling, so no post processing is necessary. These materials are widely used in the aerospace industry to reduce weight of a part while keeping strength.

<span class="mw-page-title-main">Crack growth equation</span>

A crack growth equation is used for calculating the size of a fatigue crack growing from cyclic loads. The growth of a fatigue crack can result in catastrophic failure, particularly in the case of aircraft. When many growing fatigue cracks interact with one another it is known as widespread fatigue damage. A crack growth equation can be used to ensure safety, both in the design phase and during operation, by predicting the size of cracks. In critical structure, loads can be recorded and used to predict the size of cracks to ensure maintenance or retirement occurs prior to any of the cracks failing. Safety factors are used to reduce the predicted fatigue life to a service fatigue life because of the sensitivity of the fatigue life to the size and shape of crack initiating defects and the variability between assumed loading and actual loading experienced by a component.

Laser polishing, also referred to as laser re-melting, is a type of micro-melting process employed for improving surface quality of materials. As opposed to other conventional polishing processes, this process does not involve removal of materials from the workpiece surface. In this process, the laser is made incident on the workpiece to melt the surface down to a certain depth, thus enabling subsequent betterment of surface parameters due to re-solidification of the melted material.

References

  1. Cantwell, W.J.; Morton, J. (1991). "The impact resistance of composite materials — a review". Composites. 22 (5): 347–362. doi:10.1016/0010-4361(91)90549-V.
  2. 1 2 Bramfitt, B. L.; Marder, A. R. (1977). "A study of the delamination behavior of a very low-carbon steel". Metallurgical Transactions A. 8 (8): 1263–1273. Bibcode:1977MTA.....8.1263B. doi:10.1007/bf02643841. ISSN   0360-2133. S2CID   136949441.
  3. Dogan, Mizam (2011). "Delamination failure of steel single angle sections". Engineering Failure Analysis. 18 (7): 1800–1807. doi:10.1016/j.engfailanal.2011.04.009.
  4. 1 2 "Layer Separation and Splitting". Prusa3D - 3D Printers from Josef Průša. 2019-01-04. Retrieved 2019-05-03.
  5. Barile, Claudia; Casavola, Caterina; Cazzato, Alberto (2018-09-18). "Acoustic Emissions in 3D Printed Parts under Mode I Delamination Test". Materials. 11 (9): 1760. Bibcode:2018Mate...11.1760B. doi: 10.3390/ma11091760 . ISSN   1996-1944. PMC   6165299 . PMID   30231488.
  6. Wisnom, M. R. (2012-04-28). "The role of delamination in failure of fibre-reinforced composites". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 370 (1965): 1850–1870. Bibcode:2012RSPTA.370.1850W. doi: 10.1098/rsta.2011.0441 . ISSN   1364-503X. PMID   22431760.
  7. Li, C. Q.; Zheng, J. J.; Lawanwisut, W.; Melchers, R. E. (2007). "Concrete Delamination Caused by Steel Reinforcement Corrosion". Journal of Materials in Civil Engineering. 19 (7): 591–600. doi:10.1061/(ASCE)0899-1561(2007)19:7(591). ISSN   0899-1561.
  8. "CIP 20 - Delamination of Troweled Concrete Surfaces" (PDF). NRMCA National Ready Mix Concrete Association. May 4, 2019. Archived from the original (PDF) on July 28, 2019. Retrieved May 15, 2019.
  9. "DOT/FAA/AR-02/121: Guidelines for Analysis, Testing, and Nondestructive Inspection of Impact- Damaged Composite Sandwich Structures" (PDF). March 2003.
  10. "The Limitations of Tap Testing". carbonbikerepair.com.au. Retrieved 2019-05-16.
  11. ASTM ASTM D4580/D4580M - 12: Standard Practice for Measuring Delaminations in Concrete Bridge Decks by Sounding, West Conshohocken, PA: ASTM International, 2018
  12. Ahmadi, Hossein (December 2017). Concrete Bridge Deck Aging, Inspection and Maintenance (Master of Science thesis). University of Toledo. Archived from the original on 2019-05-16. Retrieved 2019-05-16.
  13. ASTM D2197 - 98: Standard Test Method for Adhesion of Organic Coatings by Scrape Adhesion, West Conshohocken, PA: ASTM International, 1998
  14. ASTM D4541 - 17: Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers, West Conshohocken, PA: ASTM International, 2017
  15. Zehnder, Alan (2012). Fracture mechanics. Springer. ISBN   9789400725959. OCLC   905283457.
  16. 1 2 ASTM D7905/D7905M - 14: Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, West Conshohocken, PA: ASTM International, 2014
  17. 1 2 ASTM D5528 - 13: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, West Conshohocken, PA: ASTM International, 2014