Coating

Last updated
Lacquer being sprayed onto a cabinet Spraying lacquer on cabinets LCCN2016850642.jpg
Lacquer being sprayed onto a cabinet

A coating is a covering that is applied to the surface of an object, or substrate. [1] [2] The purpose of applying the coating may be decorative, functional, or both. [3] Coatings may be applied as liquids, gases or solids e.g. powder coatings.

Contents

Paints and lacquers are coatings that mostly have dual uses, which are protecting the substrate and being decorative, although some artists paints are only for decoration, and the paint on large industrial pipes is for identification (e.g. blue for process water, red for fire-fighting control) in addition to preventing corrosion. Along with corrosion resistance, functional coatings may also be applied to change the surface properties of the substrate, such as adhesion, wettability, or wear resistance. [4] In other cases the coating adds a completely new property, such as a magnetic response or electrical conductivity (as in semiconductor device fabrication, where the substrate is a wafer), and forms an essential part of the finished product. [5] [6]

A major consideration for most coating processes is controlling coating thickness. Methods of achieving this range from a simple brush to expensive precision machinery in the electronics industry. Limiting coating area is crucial in some applications, such as printing.

"roll-to-roll" or "web-based" coating is the process of applying a thin film of functional material to a substrate on a roll, such as paper, fabric, film, foil, or sheet stock. [7]

Applications

Coatings can be both decorative and have other functions. [4] [8] A pipe carrying water for a fire suppression system can be coated with a red (for identification) anticorrosion paint. Most coatings to some extent protect the substrate, such as maintenance coatings for metals and concrete. [9] A decorative coating can offer a particular reflective property, such as high gloss, satin, matte, or flat appearance. [10]

A major coating application is to protect metal from corrosion. [11] [12] [13] [14] [15] [16] Automotive coatings are used to enhance the appearance and durability of vehicles. These include primers, basecoats, and clearcoats, primarily applied with spray guns and electrostatically. [17] The body and underbody of automobiles receive some form of underbody coating. [18] Such anticorrosion coatings may use graphene in combination with water-based epoxies. [19]

Coatings are used to seal the surface of concrete, such as seamless polymer/resin flooring, [20] [21] [22] [23] [24] bund wall/containment lining, waterproofing and damp proofing concrete walls, and bridge decks. [25] [26] [27] [28]

Most roof coatings are designed primarily for waterproofing, though sun reflection (to reduce heating and cooling) may also be a consideration. They tend to be elastomeric to allow for movement of the roof without cracking within the coating membrane. [29] [30] [31]

Wood has been a key material in construction since ancient times, so its preservation by coating has received much attention. [32] Efforts to improve the performance of wood coatings continue. [33] [34] [35] [36] [37]

Coatings are used to alter tribological properties and wear characteristics. [38] [39] These include anti-friction, wear and scuffing resistance coatings for rolling-element bearings [40]

Other

Other functions of coatings include:

Analysis and characterization

Numerous destructive and non-destructive evaluation (NDE) methods exist for characterizing coatings. [57] [58] [59] [60] The most common destructive method is microscopy of a mounted cross-section of the coating and its substrate. [61] [62] [63] The most common non-destructive techniques include ultrasonic thickness measurement, X-ray fluorescence (XRF), [64] X-Ray diffraction (XRD) [65] and micro hardness indentation. [66] X-ray photoelectron spectroscopy (XPS) is also a classical characterization method to investigate the chemical composition of the nanometer thick surface layer of a material. [67] Scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDX, or SEM-EDS) allows to visualize the surface texture and to probe its elementary chemical composition. [68] Other characterization methods include transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning tunneling microscope (STM), and Rutherford backscattering spectrometry (RBS). Various methods of Chromatography are also used, [69] as well as thermogravimetric analysis. [70]

Formulation

The formulation of a coating depends primarily on the function required of the coating and also on aesthetics required such as color and gloss. [71] The four primary ingredients are the resin (or binder), solvent which maybe water (or solventless), pigment(s) and additives.[ example needed ] [72] [73] Research is ongoing to remove heavy metals from coating formulations completely. [74]

For example on the basis of experimental and epidemiological evidence, it has been classified by the IARC (International Agency for Research on Cancer) as a human carcinogen by inhalation (class I) (ISPESL, 2008). [75]

Processes

Coating processes may be classified as follows:

Vapor deposition

Chemical vapor deposition

Physical vapor deposition

Chemical and electrochemical techniques

Spraying

Roll-to-roll coating processes

Common roll-to-roll coating processes include:

Physical

See also

Related Research Articles

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

Indium tin oxide (ITO) is a ternary composition of indium, tin and oxygen in varying proportions. Depending on the oxygen content, it can be described as either a ceramic or an alloy. Indium tin oxide is typically encountered as an oxygen-saturated composition with a formulation of 74% In, 8% Sn, and 18% O by weight. Oxygen-saturated compositions are so typical that unsaturated compositions are termed oxygen-deficient ITO. It is transparent and colorless in thin layers, while in bulk form it is yellowish to gray. In the infrared region of the spectrum it acts as a metal-like mirror.

Surface modification is the act of modifying the surface of a material by bringing physical, chemical or biological characteristics different from the ones originally found on the surface of a material.

A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films is a fundamental step in many applications. A familiar example is the household mirror, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of silvering was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as sputtering. Advances in thin film deposition techniques during the 20th century have enabled a wide range of technological breakthroughs in areas such as magnetic recording media, electronic semiconductor devices, integrated passive devices, LEDs, optical coatings, hard coatings on cutting tools, and for both energy generation and storage. It is also being applied to pharmaceuticals, via thin-film drug delivery. A stack of thin films is called a multilayer.

<span class="mw-page-title-main">Electrophoretic deposition</span>

Electrophoretic deposition (EPD), is a term for a broad range of industrial processes which includes electrocoating, cathodic electrodeposition, anodic electrodeposition, and electrophoretic coating, or electrophoretic painting. A characteristic feature of this process is that colloidal particles suspended in a liquid medium migrate under the influence of an electric field (electrophoresis) and are deposited onto an electrode. All colloidal particles that can be used to form stable suspensions and that can carry a charge can be used in electrophoretic deposition. This includes materials such as polymers, pigments, dyes, ceramics and metals.

<span class="mw-page-title-main">Nanocomposite</span> Solid material with nano-scale structure

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.

<span class="mw-page-title-main">Physical vapor deposition</span> Method of coating solid surfaces with thin films

Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from a condensed phase to a vapor phase and then back to a thin film condensed phase. The most common PVD processes are sputtering and evaporation. PVD is used in the manufacturing of items which require thin films for optical, mechanical, electrical, acoustic or chemical functions. Examples include semiconductor devices such as thin-film solar cells, microelectromechanical devices such as thin film bulk acoustic resonator, aluminized PET film for food packaging and balloons, and titanium nitride coated cutting tools for metalworking. Besides PVD tools for fabrication, special smaller tools used mainly for scientific purposes have been developed.

<span class="mw-page-title-main">Aminoethylpiperazine</span> Chemical compound

Aminoethylpiperazine (AEP) is a derivative of piperazine. This ethyleneamine contains three nitrogen atoms; one primary, one secondary and one tertiary. It is a corrosive organic liquid and can cause second or third degree burns. Aminoethylpiperazine can also cause pulmonary edema as a result of inhalation. It is REACH and TSCA registered.

<span class="mw-page-title-main">Non-stick surface</span> Coating that prevents sticking

A non-stick surface is engineered to reduce the ability of other materials to stick to it. Non-stick cookware is a common application, where the non-stick coating allows food to brown without sticking to the pan. Non-stick is often used to refer to surfaces coated with polytetrafluoroethylene (PTFE), a well-known brand of which is Teflon. In the twenty-first century, other coatings have been marketed as non-stick, such as anodized aluminium, silica, enameled cast iron, and seasoned cookware.

<span class="mw-page-title-main">Chromium nitride</span> Chemical compound

Chromium nitride is a chemical compound of chromium and nitrogen with the formula CrN. It is very hard, and is extremely resistant to corrosion. It is an interstitial compound, with nitrogen atoms occupying the octahedral holes in the chromium lattice: as such, it is not strictly a chromium(III) compound nor does it contain nitride ions (N3−). Chromium forms a second interstitial nitride, dichromium nitride, Cr2N.

Anti-scratch coating is a type of protective coating or film applied to an object's surface for mitigation against scratches. Scratches are small surface-level cuts left on a surface following interaction with a sharper object. Anti-scratch coatings provide scratch resistances by containing tiny microscopic materials with scratch-resistant properties. Scratch resistance materials come in the form of additives, filters, and binders. Besides materials, scratch resistances is impacted by coating formation techniques. Scratch resistance is measured using the Scratch-hardness test. Commercially, anti-scratch coatings are used in the automotive, optical, photographic, and electronics industries, where resale and/or functionality is impaired by scratches. Anti-scratch coatings are of growing importance as traditional scratch resistance materials like metals and glass are replaced with low-scratch resistant plastics.

<span class="mw-page-title-main">Surface modification of biomaterials with proteins</span>

Biomaterials are materials that are used in contact with biological systems. Biocompatibility and applicability of surface modification with current uses of metallic, polymeric and ceramic biomaterials allow alteration of properties to enhance performance in a biological environment while retaining bulk properties of the desired device.

Nanosphere lithography (NSL) is an economical technique for generating single-layer hexagonally close packed or similar patterns of nanoscale features. Generally, NSL applies planar ordered arrays of nanometer-sized latex or silica spheres as lithography masks to fabricate nanoparticle arrays. NSL uses self-assembled monolayers of spheres as evaporation masks. These spheres can be deposited using multiple methods including Langmuir-Blodgett, dip coating, spin coating, solvent evaporation, force-assembly, and air-water interface. This method has been used to fabricate arrays of various nanopatterns, including gold nanodots with precisely controlled spacings.

Self-cleaning surfaces are a class of materials with the inherent ability to remove any debris or bacteria from their surfaces in a variety of ways. The self-cleaning functionality of these surfaces are commonly inspired by natural phenomena observed in lotus leaves, gecko feet, and water striders to name a few. The majority of self-cleaning surfaces can be placed into three categories:

  1. superhydrophobic
  2. superhydrophilic
  3. photocatalytic.

Polyurethane dispersion, or PUD, is understood to be a polyurethane polymer resin dispersed in water, rather than a solvent, although some cosolvent maybe used. Its manufacture involves the synthesis of polyurethanes having carboxylic acid functionality or nonionic hydrophiles like PEG incorporated into, or pendant from, the polymer backbone. Two component polyurethane dispersions are also available.

Waterborne resins are sometimes called water-based resins. They are resins or polymeric resins that use water as the carrying medium as opposed to solvent or solvent-less. Resins are used in the production of coatings, adhesives, sealants, elastomers and composite materials. When the phrase waterborne resin is used, it usually describes all resins which have water as the main carrying solvent. The resin could be water-soluble, water reducible or water dispersed.

<span class="mw-page-title-main">Slot-die coating</span> Technique for coating flat substrates

Slot-die coating is a coating technique for the application of solution, slurry, or extruded thin films onto typically flat substrates such as glass, metal, paper, fabric or plastic foils. The process was first developed for the industrial production of photographic papers in the 1950's. It has since become relevant in numerous commercial processes and nanomaterials related research fields.

Jaime C. Grunlan is a material scientist and academic. He is a Professor of Mechanical Engineering, and Leland T. Jordan ’29 Chair Professor at Texas A&M University.

<span class="mw-page-title-main">3,3',4,4'-Benzophenone tetracarboxylic dianhydride</span> Chemical compound

3,3’,4,4’-Benzophenone tetracarboxylic dianhydride (BTDA) is chemically, an aromatic organic acid dianhydride. It may be used to cure epoxy-based powder coatings. It has the CAS Registry Number of 2421-28-5 and a European Community number 219-348-1. It is REACH and TSCA registered. The formula is C17H6O7 with a molecular weight of 322.3.

Laser metal deposition (LMD) is an additive manufacturing process in which a feedstock material is melted with a laser and then deposited onto a substrate. A variety of pure metals and alloys can be used as the feedstock, as well as composite materials such as metal matrix composites. Laser sources with a wide variety of intensities, wavelengths, and optical configurations can be used. While LMD is typically a melt-based process, this is not a requirement, as discussed below. Melt-based processes typically have a strength advantage, due to achieving a full metallurgical fusion.

References

  1. Saberi, A.; Bakhsheshi-Rad, H.R.; Abazari, S.; Ismail, A.F.; Sharif, S.; Ramakrishna, S.; Daroonparvar, M.; Berto, F. A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges. Coatings 2021, 11, 747. https://doi.org/10.3390/coatings11070747
  2. Carroll, Gregory T.; Turro, Nicholas J.; Mammana, Angela; Koberstein, Jeffrey T. (2017). "Photochemical Immobilization of Polymers on a Surface: Controlling Film Thickness and Wettability". Photochemistry and Photobiology. 93 (5): 1165–1169. doi:10.1111/php.12751. ISSN   0031-8655. PMID   28295380. S2CID   32105803.
  3. Howarth, G A; Manock, H L (July 1997). "Water-borne polyurethane dispersions and their use in functional coatings". Surface Coatings International. 80 (7): 324–328. doi:10.1007/bf02692680. ISSN   1356-0751. S2CID   137433262.
  4. 1 2 Howarth G.A "Synthesis of a legislation compliant corrosion protection coating system based on urethane, oxazolidine and waterborne epoxy technology" Master of Science Thesis April 1997 Imperial College London
  5. Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng (2016-06-28). "Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors". Langmuir. 32 (25): 6246–6254. doi:10.1021/acs.langmuir.6b01083. ISSN   0743-7463. PMID   27267545.
  6. Campoy-Quiles, M.; Schmidt, M.; Nassyrov, D.; Peña, O.; Goñi, A. R.; Alonso, M. I.; Garriga, M. (2011-02-28). "Real-time studies during coating and post-deposition annealing in organic semiconductors". Thin Solid Films. 5th International Conference on Spectroscopic Ellipsometry (ICSE-V). 519 (9): 2678–2681. Bibcode:2011TSF...519.2678C. doi:10.1016/j.tsf.2010.12.228. ISSN   0040-6090.
  7. Granqvist, Claes G.; Bayrak Pehlivan, İlknur; Niklasson, Gunnar A. (2018-02-25). "Electrochromics on a roll: Web-coating and lamination for smart windows". Surface and Coatings Technology. Society of Vacuum Coaters Annual Technical Conference 2017. 336: 133–138. doi:10.1016/j.surfcoat.2017.08.006. ISSN   0257-8972. S2CID   136248754.
  8. Howarth, G A; Manock, H L (July 1997). "Water-borne polyurethane dispersions and their use in functional coatings". Surface Coatings International. 80 (7): 324–328. doi:10.1007/bf02692680. ISSN   1356-0751. S2CID   137433262.
  9. Howarth, G.A (1995). "5". In Karsa, D.R; Davies, W.D (eds.). Waterborne Maintenance Systems for Concrete and Metal Structures. Vol. 165. Cambridge, U.K: The Royal Society of Chemistry. ISBN   0-85404-740-9.
  10. Akram, Waseem; Farhan Rafique, Amer; Maqsood, Nabeel; Khan, Afzal; Badshah, Saeed; Khan, Rafi Ullah (2020-01-14). "Characterization of PTFE Film on 316L Stainless Steel Deposited through Spin Coating and Its Anticorrosion Performance in Multi Acidic Mediums". Materials. 13 (2): 388. Bibcode:2020Mate...13..388A. doi: 10.3390/ma13020388 . ISSN   1996-1944. PMC   7014069 . PMID   31947700.
  11. Li, Jiao; Bai, Huanhuan; Feng, Zhiyuan (January 2023). "Advances in the Modification of Silane-Based Sol-Gel Coating to Improve the Corrosion Resistance of Magnesium Alloys". Molecules. 28 (6): 2563. doi: 10.3390/molecules28062563 . ISSN   1420-3049. PMC   10055842 . PMID   36985537.
  12. S. Grainger and J. Blunt, Engineering Coatings: Design and Application, Woodhead Publishing Ltd, UK, 2nd ed., 1998, ISBN   978-1-85573-369-5
  13. Ramakrishnan, T.; Raja Karthikeyan, K.; Tamilselvan, V.; Sivakumar, S.; Gangodkar, Durgaprasad; Radha, H. R.; Narain Singh, Anoop; Asrat Waji, Yosef (2022-01-13). "Study of Various Epoxy-Based Surface Coating Techniques for Anticorrosion Properties". Advances in Materials Science and Engineering. 2022: e5285919. doi: 10.1155/2022/5285919 . ISSN   1687-8434.
  14. Mutyala, Kalyan C.; Ghanbari, E.; Doll, G.L. (August 2017). "Effect of deposition method on tribological performance and corrosion resistance characteristics of Cr x N coatings deposited by physical vapor deposition". Thin Solid Films. 636: 232–239. Bibcode:2017TSF...636..232M. doi: 10.1016/j.tsf.2017.06.013 . ISSN   0040-6090.
  15. Gite, Vikas V., et al. "Microencapsulation of quinoline as a corrosion inhibitor in polyurea microcapsules for application in anticorrosive PU coatings." Progress in Organic Coatings 83 (2015): 11-18.
  16. Gao, Mei-lian; Wu, Xiao-bo; Gao, Ping-ping; Lei, Ting; Liu, Chun-xuan; Xie, Zhi-yong (2019-11-01). "Properties of hydrophobic carbon–PTFE composite coating with high corrosion resistance by facile preparation on pure Ti". Transactions of Nonferrous Metals Society of China. 29 (11): 2321–2330. doi:10.1016/S1003-6326(19)65138-1. ISSN   1003-6326. S2CID   213902777.
  17. Jaiswal, Vishal. "Coating Process: Types, Applications, and Advantages" . Retrieved 2023-05-05.
  18. "Applying underbody sealant". How a Car Works. Retrieved 2022-11-14.
  19. Monetta, T.; Acquesta, A.; Carangelo, A.; Bellucci, F. (2018-09-01). "Considering the effect of graphene loading in water-based epoxy coatings". Journal of Coatings Technology and Research. 15 (5): 923–931. doi:10.1007/s11998-018-0045-8. ISSN   1935-3804. S2CID   139956928.
  20. "Polymer Flooring Systems For Industrial and Manufacturing Facilities". Surface Solutions. Retrieved 2022-11-14.
  21. "Arizona Polymer Flooring | Industrial Epoxy Floor Coatings". www.apfepoxy.com. Retrieved 2022-11-14.
  22. WO2016166361A1,WOLF, Elwin Aloysius Cornelius Adrianus DE; Thys, Ferry Ludovicus& Brinkhuis, Richard Hendrikus Gerritet al.,"Floor coating compositions",issued 2016-10-20
  23. Gelfant, Frederick (2015). "Polymeric Floor Coatings". Protective Organic Coatings. pp. 139–151. doi:10.31399/asm.hb.v05b.a0006037. ISBN   978-1-62708-172-6 . Retrieved 2022-11-14.
  24. Ateya, Taher & Balcı, Bekir & Bayraktar, Oğuzhan & Kaplan, Gökhan. (2019). Floor Coating Materials.
  25. O’Reilly, Matthew; Darwin, David; Browning, JoAnn; Locke, Carl E. (January 2011). Evaluation of Multiple Corrosion Protection Systems for Reinforced Concrete Bridge Decks.
  26. Weyers, Richard E.; Cady, Philip D. (1987-01-01). "Deterioration of Concrete Bridge Decks from Corrosion of Reinforcing Steel". Concrete International. 9 (1). ISSN   0162-4075.
  27. Grace, Nabil; Hanson, James; AbdelMessih, Hany (2004-10-01). "Inspection and Deterioration of Bridge Decks Constructed Using Stay-In-Place Metal Forms and Epoxy-Coated Reinforcement". Civil and Environmental Engineering.
  28. Babaei, K; Hawkins, N.M (1987). EVALUATION OF BRIDGE DECK PROTECTIVE STRATEGIES (PDF). Washington DC: Transportation Research Board. ISBN   0-309-04566-5. ISSN   0077-5614.
  29. "History of Liquid Waterproofing". Liquid Roofing and Waterproofing Association. Archived from the original on 1 October 2011. Retrieved 12 September 2011.
  30. "Liquid-Applied Monolithic Membrane Systems". Roof Coatings Manufacturers Association. Retrieved 12 September 2011.
  31. "The benefits of liquid roofing". Why use liquid waterproofing. Liquid Roofing & Waterproofing Association. Archived from the original on 1 October 2011. Retrieved 12 September 2011.
  32. Rowell, Roger M. (2021-07-31). "Understanding Wood Surface Chemistry and Approaches to Modification: A Review". Polymers. 13 (15): 2558. doi: 10.3390/polym13152558 . ISSN   2073-4360. PMC   8348385 . PMID   34372161.
  33. WO2014190515A1,Yang, Xiaohong; Xu, Jianming& Xu, Yaweiet al.,"Wood coating composition",issued 2014-12-04
  34. Hazir, Ender; Koc, Kücük Huseyin; Hazir, Ender; Koc, Kücük Huseyin (December 2019). "Evaluation of wood surface coating performance using water based, solvent based and powder coating". Maderas. Ciencia y tecnología. 21 (4): 467–480. doi: 10.4067/S0718-221X2019005000404 . ISSN   0718-221X. S2CID   198185614.
  35. Désor, D.; Krieger, S.; Apitz, G.; Kuropka, R. (1999-10-01). "Water-borne acrylic dispersions for industrial wood coatings". Surface Coatings International. 82 (10): 488–496. doi:10.1007/BF02692644. ISSN   1356-0751. S2CID   135745347.
  36. Podgorski, L.; Roux, M. (1999-12-01). "Wood modification to improve the durability of coatings". Surface Coatings International. 82 (12): 590–596. doi:10.1007/BF02692672. ISSN   1356-0751. S2CID   138555194.
  37. Žigon, Jure; Kovač, Janez; Petrič, Marko (2022-01-01). "The influence of mechanical, physical and chemical pre-treatment processes of wood surface on the relationships of wood with a waterborne opaque coating". Progress in Organic Coatings. 162: 106574. doi: 10.1016/j.porgcoat.2021.106574 . ISSN   0300-9440. S2CID   240200011.
  38. Tafreshi, Mahshid; Allahkaram, Saeid Reza; Mahdavi, Soheil (2020-12-01). "Effect of PTFE on characteristics, corrosion, and tribological behavior of Zn–Ni electrodeposits". Surface Topography: Metrology and Properties. 8 (4): 045013. Bibcode:2020SuTMP...8d5013T. doi:10.1088/2051-672X/ab9f05. ISSN   2051-672X. S2CID   225695450.
  39. Peng, Shiguang; Zhang, Lin; Xie, Guoxin; Guo, Yue; Si, Lina; Luo, Jianbin (2019-09-01). "Friction and wear behavior of PTFE coatings modified with poly (methyl methacrylate)". Composites Part B: Engineering. 172: 316–322. doi:10.1016/j.compositesb.2019.04.047. ISSN   1359-8368. S2CID   155175532.
  40. Mutyala, Kalyan C.; Singh, Harpal; Evans, R. D.; Doll, G. L. (23 June 2016). "Effect of Diamond-Like Carbon Coatings on Ball Bearing Performance in Normal, Oil-Starved, and Debris-Damaged Conditions". Tribology Transactions. 59 (6): 1039–1047. doi:10.1080/10402004.2015.1131349. S2CID   138874627.
  41. Cassé, Franck; Swain, Geoffrey W. (2006-04-01). "The development of microfouling on four commercial antifouling coatings under static and dynamic immersion". International Biodeterioration & Biodegradation. 57 (3): 179–185. doi:10.1016/j.ibiod.2006.02.008. ISSN   0964-8305.
  42. Chambers, L.D.; Stokes, K.R.; Walsh, F.C.; Wood, R.J.K. (December 2006). "Modern approaches to marine antifouling coatings". Surface and Coatings Technology. 201 (6): 3642–3652. doi:10.1016/j.surfcoat.2006.08.129. ISSN   0257-8972.
  43. Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim (2004-07-01). "Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings". Progress in Organic Coatings. 50 (2): 75–104. doi:10.1016/j.porgcoat.2003.06.001. ISSN   0300-9440.
  44. Salwiczek, Mario; Qu, Yue; Gardiner, James; Strugnell, Richard A.; Lithgow, Trevor; McLean, Keith M.; Thissen, Helmut (2014-02-01). "Emerging rules for effective antimicrobial coatings". Trends in Biotechnology. 32 (2): 82–90. doi:10.1016/j.tibtech.2013.09.008. ISSN   0167-7799. PMID   24176168.
  45. Anshel, Jeffrey (2005). Visual ergonomics handbook. CRC Press. p. 56. ISBN   1-56670-682-3.
  46. Constantinides, Steve (2022-01-01), Croat, John; Ormerod, John (eds.), "Chapter 11 - Permanent magnet coatings and testing procedures", Modern Permanent Magnets, Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publishing, pp. 371–402, doi:10.1016/b978-0-323-88658-1.00011-x, ISBN   978-0-323-88658-1, S2CID   246599451 , retrieved 2022-11-14
  47. Biehl, Philip; Von der Lühe, Moritz; Dutz, Silvio; Schacher, Felix H. (January 2018). "Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings". Polymers. 10 (1): 91. doi: 10.3390/polym10010091 . ISSN   2073-4360. PMC   6414908 . PMID   30966126.
  48. Abdolrahimi, Maryam; Vasilakaki, Marianna; Slimani, Sawssen; Ntallis, Nikolaos; Varvaro, Gaspare; Laureti, Sara; Meneghini, Carlo; Trohidou, Kalliopi N.; Fiorani, Dino; Peddis, Davide (July 2021). "Magnetism of Nanoparticles: Effect of the Organic Coating". Nanomaterials. 11 (7): 1787. doi: 10.3390/nano11071787 . ISSN   2079-4991. PMC   8308320 . PMID   34361173.
  49. Liang, Shuyu; Neisius, N. Matthias; Gaan, Sabyasachi (2013-11-01). "Recent developments in flame retardant polymeric coatings". Progress in Organic Coatings. 76 (11): 1642–1665. doi:10.1016/j.porgcoat.2013.07.014. ISSN   0300-9440.
  50. Gu, Jun-wei; Zhang, Guang-cheng; Dong, Shan-lai; Zhang, Qiu-yu; Kong, Jie (2007-06-25). "Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings". Surface and Coatings Technology. 201 (18): 7835–7841. doi:10.1016/j.surfcoat.2007.03.020. ISSN   0257-8972.
  51. Weil, Edward D. (May 2011). "Fire-Protective and Flame-Retardant Coatings - A State-of-the-Art Review". Journal of Fire Sciences. 29 (3): 259–296. doi:10.1177/0734904110395469. ISSN   0734-9041. S2CID   98415445.
  52. Naiker, Vidhukrishnan E.; Mestry, Siddhesh; Nirgude, Tejal; Gadgeel, Arjit; Mhaske, S. T. (2023-01-01). "Recent developments in phosphorous-containing bio-based flame-retardant (FR) materials for coatings: an attentive review". Journal of Coatings Technology and Research. 20 (1): 113–139. doi:10.1007/s11998-022-00685-z. ISSN   1935-3804. S2CID   253349703.
  53. Puri, Ravindra G.; Khanna, A. S. (2017-01-01). "Intumescent coatings: A review on recent progress". Journal of Coatings Technology and Research. 14 (1): 1–20. doi:10.1007/s11998-016-9815-3. ISSN   1935-3804. S2CID   138961125.
  54. Thomas, P. (1998-12-01). "The use of fluoropolymers for non-stick cooking utensils". Surface Coatings International. 81 (12): 604–609. doi:10.1007/BF02693055. ISSN   1356-0751. S2CID   98242721.
  55. Yao, Junyi; Guan, Yiyang; Park, Yunhwan; Choi, Yoon E; Kim, Hyun Soo; Park, Jaewon (2021-03-04). "Optimization of PTFE Coating on PDMS Surfaces for Inhibition of Hydrophobic Molecule Absorption for Increased Optical Detection Sensitivity". Sensors. 21 (5): 1754. Bibcode:2021Senso..21.1754Y. doi: 10.3390/s21051754 . ISSN   1424-8220. PMC   7961674 . PMID   33806281.
  56. "Radiation-Cured Coatings Continue to Experience Growth". www.coatingstech-digital.org. Retrieved 2022-11-14.
  57. Walls, J. M. (1981-06-19). "The application of surface analytical techniques to thin films and surface coatings". Thin Solid Films. 80 (1): 213–220. Bibcode:1981TSF....80..213W. doi:10.1016/0040-6090(81)90224-8. ISSN   0040-6090.
  58. Benninghoven, A. (1976-12-01). "Characterization of coatings". Thin Solid Films. 39: 3–23. Bibcode:1976TSF....39....3B. doi:10.1016/0040-6090(76)90620-9. ISSN   0040-6090.
  59. Porter, Stuart C.; Felton, Linda A. (2010-01-21). "Techniques to assess film coatings and evaluate film-coated products". Drug Development and Industrial Pharmacy. 36 (2): 128–142. doi:10.3109/03639040903433757. ISSN   0363-9045. PMID   20050727. S2CID   20645493.
  60. Doménech-Carbó, María Teresa (2008-07-28). "Novel analytical methods for characterising binding media and protective coatings in artworks". Analytica Chimica Acta. 621 (2): 109–139. Bibcode:2008AcAC..621..109D. doi:10.1016/j.aca.2008.05.056. ISSN   0003-2670. PMID   18573376.
  61. Garcia-Ayuso, G.; Vázquez, L.; Martínez-Duart, J. M. (1996-03-01). "Atomic force microscopy (AFM) morphological surface characterization of transparent gas barrier coatings on plastic films". Surface and Coatings Technology. 80 (1): 203–206. doi:10.1016/0257-8972(95)02712-2. ISSN   0257-8972.
  62. Caniglia, Giada; Kranz, Christine (2020-09-01). "Scanning electrochemical microscopy and its potential for studying biofilms and antimicrobial coatings". Analytical and Bioanalytical Chemistry. 412 (24): 6133–6148. doi:10.1007/s00216-020-02782-7. ISSN   1618-2650. PMC   7442582 . PMID   32691088.
  63. Erich, S. J. F.; Laven, J.; Pel, L.; Huinink, H. P.; Kopinga, K. (2005-03-01). "Comparison of NMR and confocal Raman microscopy as coatings research tools". Progress in Organic Coatings. 52 (3): 210–216. doi:10.1016/j.porgcoat.2004.12.002. ISSN   0300-9440.
  64. Revenko, A. G.; Tsvetyansky, A. L.; Eritenko, A. N. (2022-08-01). "X-ray fluorescence analysis of solid-state films, layers, and coatings". Radiation Physics and Chemistry. 197: 110157. Bibcode:2022RaPC..19710157R. doi:10.1016/j.radphyschem.2022.110157. ISSN   0969-806X. S2CID   248276982.
  65. Schorr, Brian S; Stein, Kevin J; Marder, Arnold R (1999-02-03). "Characterization of Thermal Spray Coatings". Materials Characterization. 42 (2): 93–100. doi:10.1016/S1044-5803(98)00048-5. ISSN   1044-5803.
  66. Martín Sánchez, A.; Nuevo, M. J.; Ojeda, M. A.; Guerra Millán, S.; Celestino, S.; Rodríguez González, E. (2020-02-01). "Analytical techniques applied to the study of mortars and coatings from the Tartessic archaeological site "El Turuñuelo" (Spain)". Radiation Physics and Chemistry. Special issue dedicated to the 14th International Symposium on Radiation Physics. 167: 108341. Bibcode:2020RaPC..16708341M. doi:10.1016/j.radphyschem.2019.05.031. ISSN   0969-806X. S2CID   182324915.
  67. Kravanja, Katja Andrina; Finšgar, Matjaž (December 2021). "Analytical Techniques for the Characterization of Bioactive Coatings for Orthopaedic Implants". Biomedicines. 9 (12): 1936. doi: 10.3390/biomedicines9121936 . ISSN   2227-9059. PMC   8698289 . PMID   34944750.
  68. Cook, Desmond C. (2005-10-01). "Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments". Corrosion Science. International Symposium on Corrosion and Protection of Marine Structures—in memory of the late Professor Toshihei Misawa. 47 (10): 2550–2570. Bibcode:2005Corro..47.2550C. doi:10.1016/j.corsci.2004.10.018. ISSN   0010-938X.
  69. Lestido-Cardama, Antía; Vázquez-Loureiro, Patricia; Sendón, Raquel; Bustos, Juana; Santillana, Mª Isabel; Paseiro Losada, Perfecto; Rodríguez Bernaldo de Quirós, Ana (January 2022). "Characterization of Polyester Coatings Intended for Food Contact by Different Analytical Techniques and Migration Testing by LC-MSn". Polymers. 14 (3): 487. doi: 10.3390/polym14030487 . ISSN   2073-4360. PMC   8839341 . PMID   35160476.
  70. Mansfield, Elisabeth; Tyner, Katherine M.; Poling, Christopher M.; Blacklock, Jenifer L. (2014-02-04). "Determination of Nanoparticle Surface Coatings and Nanoparticle Purity Using Microscale Thermogravimetric Analysis". Analytical Chemistry. 86 (3): 1478–1484. doi:10.1021/ac402888v. ISSN   0003-2700. PMID   24400715.
  71. Müller, Bodo (2006). Coatings formulation : an international textbook. Urlich Poth. Hannover: Vincentz. ISBN   3-87870-177-2. OCLC   76886114.
  72. Müller, Bodo (2006). Coatings formulation : an international textbook. Urlich Poth. Hannover: Vincentz. p. 19. ISBN   3-87870-177-2. OCLC   76886114.
  73. "CoatingsTech - Novel Natural Additives for Surface Coatings". www.coatingstech-digital.org. Retrieved 2022-07-07.
  74. Puthran, Dayanand; Patil, Dilip (2023-01-01). "Usage of heavy metal-free compounds in surface coatings". Journal of Coatings Technology and Research. 20 (1): 87–112. doi:10.1007/s11998-022-00648-4. ISSN   1935-3804. S2CID   251771272.
  75. Brizzi, Luca; Galbusera, Federico. ""Riduzione in situ del cromo esavalente mediante iniezione di substrati organici in acquifero"" (PDF).
  76. Fristad, W. E. (2000). "Epoxy Coatings for Automotive Corrosion Protection". SAE Technical Paper Series. Vol. 1. doi:10.4271/2000-01-0617.
  77. Zanier, Fabiana. ""Studio del processo di nichelatura chimica"" (PDF).
  78. US 2681294,"Method of coating strip material",issued 1951-08-23
  79. Beeker, L.Y. (March 2018). "Open-source parametric 3-D printed slot die system for thin film semiconductor processing" (PDF). Additive Manufacturing. 20: 90–100. doi:10.1016/j.addma.2017.12.004. ISSN   2214-8604. S2CID   86782023.
  80. "Slot Die Coating - nTact". nTact. Retrieved 2018-11-24.
  81. "Open Source 3D printing cuts cost from $4,000 to only $0.25 says new study - 3D Printing Industry". 3dprintingindustry.com. 16 January 2018. Retrieved 2018-11-24.

Further reading