Plasma electrolytic oxidation

Last updated

Plasma electrolytic oxidation (PEO), also known as electrolytic plasma oxidation (EPO) or microarc oxidation (MAO), is an electrochemical surface treatment process for generating oxide coatings on metals. It is similar to anodizing, but it employs higher potentials, so that discharges [1] occur and the resulting plasma modifies the structure of the oxide layer. This process can be used to grow thick (tens or hundreds of micrometers), largely crystalline, oxide coatings on metals such as aluminium, magnesium [2] and titanium. Because they can present high hardness [3] and a continuous barrier, these coatings can offer protection against wear, corrosion or heat as well as electrical insulation.

Contents

A typical PEO surface on aluminium, as viewed in an SEM. PEO surface.jpg
A typical PEO surface on aluminium, as viewed in an SEM.
A yacht winch drum undergoing PEO processing. Below; a finished winch drum installed on a yacht. Processing.jpg
A yacht winch drum undergoing PEO processing. Below; a finished winch drum installed on a yacht.
Winch.PNG

The coating is a chemical conversion of the substrate metal into its oxide, and grows both inwards and outwards from the original metal surface. Because it grows inward into the substrate, it has excellent adhesion to the substrate metal. A wide range of substrate alloys can be coated, including all wrought aluminum alloys and most cast alloys, although high levels of silicon can reduce coating quality.

Process

Metals such as aluminum naturally form a passivating oxide layer which provides moderate protection against corrosion. The layer is strongly adherent to the metal surface, and it will regrow quickly if scratched off. In conventional anodizing , this layer of oxide is grown on the surface of the metal by the application of electrical potential, while the part is immersed in an acidic electrolyte.

In plasma electrolytic oxidation, higher potentials are applied. For example, in the plasma electrolytic oxidation of aluminum, at least 200 V must be applied. This locally exceeds the dielectric breakdown potential of the growing oxide film, and discharges occur. These discharges result in localized plasma reactions, with conditions of high temperature and pressure which modify the growing oxide. Processes include melting, melt-flow, re-solidification, sintering and densification of the growing oxide. One of the most significant effects, is that the oxide is partially converted from amorphous alumina into crystalline forms such as corundum (α-Al2O3) which is much harder. [3] As a result, mechanical properties such as wear resistance and toughness are enhanced.

Equipment used

The part to be coated is immersed in a bath of electrolyte which usually consists of a dilute alkaline solution such as KOH. It is electrically connected, so as to become one of the electrodes in the electrochemical cell, with the other "counter-electrode" typically being made from an inert material such as stainless steel, and often consisting of the wall of the bath itself.

Potentials of over 200 V are applied between these two electrodes. These may be continuous or pulsed direct current (DC) (in which case the part is simply an anode in DC operation), or alternating pulses (alternating current or "pulsed bi-polar" operation) where the stainless steel counter electrode might just be earthed.

Coating properties

One of the remarkable features of plasma electrolyte coatings is the presence of micro pores and cracks on the coating surface. [2] Plasma electrolytic oxide coatings are generally recognized for high hardness, wear resistance, and corrosion resistance. However, the coating properties are highly dependent on the substrate used, as well as on the composition of the electrolyte and the electrical regime used (see 'Equipment used' section, above).

Even on aluminium, the coating properties can vary strongly according to the exact alloy composition. For instance, the hardest coatings can be achieved on 2XXX series aluminium alloys, where the highest proportion of crystalline phase corundum (α-Al2O3) is formed, resulting in hardnesses of ~2000 HV, whereas coatings on the 5XXX series have less of this important constituent and are hence softer. Extensive work is being pursued by Prof. T. W. Clyne at the University of Cambridge to investigate the fundamental electrical and plasma physical processes [1] involved in this process, having previously elucidated some of the micromechanical [3] (& pore architectural [4] ), mechanical [3] and thermal [5] characteristics of PEO coatings.

Related Research Articles

Anode Electrode through which conventional current flows into a polarized electrical device

An anode is an electrode through which the conventional current enters into a polarized electrical device. This contrasts with a cathode, an electrode through which conventional current leaves an electrical device. A common mnemonic is ACID, for "anode current into device". The direction of conventional current in a circuit is opposite to the direction of electron flow, so electrons flow out the anode of a galvanic cell, into an outside or external circuit connected to the cell. In both a galvanic cell and an electrolytic cell, the anode is the electrode at which the oxidation reaction occurs.

Electrochemistry Branch of chemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential, as a measurable and quantitative phenomenon, and identifiable chemical change, with either electrical potential as an outcome of a particular chemical change, or vice versa. These reactions involve electrons moving between electrodes via an electronically-conducting phase, separated by an ionically-conducting and electronically insulating electrolyte.

Rust Type of iron oxide

Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture. Rust consists of hydrous iron(III) oxides (Fe2O3·nH2O) and iron(III) oxide-hydroxide (FeO(OH), Fe(OH)3), and is typically associated with the corrosion of refined iron.

Electroplating Creation of protective or decorative metallic coating on other metal with electric current

Electroplating is a general name for processes that produce a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current. The part to be coated acts as the cathode of an electrolytic cell; the electrolyte is a solution of a salt of the metal to be coated; and the anode is usually either a block of that metal, or of some inert conductive material. The current is provided by an external power supply.

Aluminium oxide Chemical compound with formula Al2O3

Aluminium oxide is a chemical compound of aluminium and oxygen with the chemical formula Al2O3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium(III) oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum depending on particular forms or applications. It occurs naturally in its crystalline polymorphic phase α-Al2O3 as the mineral corundum, varieties of which form the precious gemstones ruby and sapphire. Al2O3 is significant in its use to produce aluminium metal, as an abrasive owing to its hardness, and as a refractory material owing to its high melting point.

Corrosion Gradual destruction of materials by chemical reaction with its environment

Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual destruction of materials by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

Passivation, in physical chemistry and engineering, refers to coating a material so it becomes "passive," that is, less readily affected or corroded by the environment. Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build by spontaneous oxidation in the air. As a technique, passivation is the use of a light coat of a protective material, such as metal oxide, to create a shield against corrosion. Passivation of silicon is used during fabrication of microelectronic devices. In electrochemical treatment of water, passivation reduces the effectiveness of the treatment by increasing the circuit resistance, and active measures are typically used to overcome this effect, the most common being polarity reversal, which results in limited rejection of the fouling layer.

Galvanic anode Main component of cathodic protection

A galvanic anode, or sacrificial anode, is the main component of a galvanic cathodic protection (CP) system used to protect buried or submerged metal structures from corrosion.

Cathodic protection Corrosion prevention technique

Cathodic protection is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. A simple method of protection connects the metal to be protected to a more easily corroded "sacrificial metal" to act as the anode. The sacrificial metal then corrodes instead of the protected metal. For structures such as long pipelines, where passive galvanic cathodic protection is not adequate, an external DC electrical power source is used to provide sufficient current.

Chrome plating Technique of electroplating

Chrome plating is a technique of electroplating a thin layer of chromium onto a metal object. The product of chrome plating is called chrome. The chromed layer can be decorative, provide corrosion resistance, ease cleaning procedures, or increase surface hardness. Sometimes, a less expensive imitator of chrome may be used for aesthetic purposes.

Anodizing Metal treatment process

Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts.

Plating is a surface covering in which a metal is deposited on a conductive surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderability, to harden, to improve wearability, to reduce friction, to improve paint adhesion, to alter conductivity, to improve IR reflectivity, for radiation shielding, and for other purposes. Jewelry typically uses plating to give a silver or gold finish.

A silver chloride electrode is a type of reference electrode, commonly used in electrochemical measurements. For environmental reasons it has widely replaced the saturated calomel electrode. For example, it is usually the internal reference electrode in pH meters and it is often used as reference in reduction potential measurements. As an example of the latter, the silver chloride electrode is the most commonly used reference electrode for testing cathodic protection corrosion control systems in sea water environments.

Titanium nitride Chemical compound

Titanium nitride is an extremely hard ceramic material, often used as a coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface properties.

Nitriding

Nitriding is a heat treating process that diffuses nitrogen into the surface of a metal to create a case-hardened surface. These processes are most commonly used on low-alloy steels. They are also used on titanium, aluminium and molybdenum.

Electroless nickel-phosphorus plating

Electroless nickel-phosphorus plating is a chemical process that deposits an even layer of nickel-phosphorus alloy on the surface of a solid substrate, like metal or plastic. The process involves dipping the substrate in a water solution containing nickel salt and a phosphorus-containing reducing agent, usually a hypophosphite salt. It is the most common version of electroless nickel plating and is often referred by that name. A similar process uses a borohydride reducing agent, yielding a nickel-boron coating instead.

Electrogalvanizing is a process in which a layer of zinc is bonded to steel in order to protect against corrosion. The process involves electroplating, running a current of electricity through a saline/zinc solution with a zinc anode and steel conductor. Such Zinc electroplating or Zinc alloy electroplating maintains a dominant position among other electroplating process options, based upon electroplated tonnage per annum. According to the International Zinc Association, more than 5 million tons are used yearly for both hot dip galvanizing and electroplating. The plating of zinc was developed at the beginning of the 20th century. At that time, the electrolyte was cyanide based. A significant innovation occurred in the 1960s, with the introduction of the first acid chloride based electrolyte. The 1980s saw a return to alkaline electrolytes, only this time, without the use of cyanide. The most commonly used electrogalvanized cold rolled steel is SECC, acronym of "Steel, Electrogalvanized, Cold-rolled, Commercial quality". Compared to hot dip galvanizing, electroplated zinc offers these significant advantages:

High-power impulse magnetron sputtering is a method for physical vapor deposition of thin films which is based on magnetron sputter deposition. HIPIMS utilises extremely high power densities of the order of kW⋅cm−2 in short pulses (impulses) of tens of microseconds at low duty cycle of < 10%. Distinguishing features of HIPIMS are a high degree of ionisation of the sputtered metal and a high rate of molecular gas dissociation which result in high density of deposited films. The ionization and dissociation degree increase according to the peak cathode power. The limit is determined by the transition of the discharge from glow to arc phase. The peak power and the duty cycle are selected so as to maintain an average cathode power similar to conventional sputtering (1–10 W⋅cm−2).

Galvanic corrosion Electrochemical process in which one metal corrodes preferentially when it is in electrical contact with another

Galvanic corrosion is an electrochemical process in which one metal corrodes preferentially when it is in electrical contact with another, in the presence of an electrolyte. A similar galvanic reaction is exploited in primary cells to generate a useful electrical voltage to power portable devices.

Aluminum electrolytic capacitor Type of capacitor

Aluminium capacitors are polarized electrolytic capacitors whose anode electrode (+) is made of a pure aluminum foil with an etched surface. The aluminum forms a very thin insulating layer of aluminium oxide by anodization that acts as the dielectric of the capacitor. A non-solid electrolyte covers the rough surface of the oxide layer, serving in principle as the second electrode (cathode) (-) of the capacitor. A second aluminum foil called “cathode foil” contacts the electrolyte and serves as the electrical connection to the negative terminal of the capacitor.

References

  1. 1 2 Dunleavy, C.S.; Golosnoy, I.O.; Curran, J.A.; Clyne, T.W. (2009). "Characterisation of discharge events during plasma electrolytic oxidation" (PDF). Surface and Coatings Technology. 203 (22): 3410. doi:10.1016/j.surfcoat.2009.05.004.
  2. 1 2 Ibrahim, H.; Esfahani, S. N.; Poorganji, B.; Dean, D.; Elahinia, M. (January 2017). "Resorbable bone fixation alloys, forming, and post-fabrication treatments". Materials Science and Engineering: C. 70 (1): 870–888. doi: 10.1016/j.msec.2016.09.069 . PMID   27770965.
  3. 1 2 3 4 Curran, J; Clyne, T (2005). "Thermo-physical properties of plasma electrolytic oxide coatings on aluminium". Surface and Coatings Technology. 199 (2–3): 168. doi:10.1016/j.surfcoat.2004.09.037.
  4. Curran, J.A.; Clyne, T.W. (2006). "Porosity in plasma electrolytic oxide coatings". Acta Materialia. 54 (7): 1985. Bibcode:2006AcMat..54.1985C. doi:10.1016/j.actamat.2005.12.029.
  5. Curran, J; Clyne, T (2005). "The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium". Surface and Coatings Technology. 199 (2–3): 177. doi:10.1016/j.surfcoat.2004.11.045.