Hardness

Last updated

In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation, such as an indentation (over an area) or a scratch (linear), induced mechanically either by pressing or abrasion. In general, different materials differ in their hardness; for example hard metals such as titanium and beryllium are harder than soft metals such as sodium and metallic tin, or wood and common plastics. Macroscopic hardness is generally characterized by strong intermolecular bonds, but the behavior of solid materials under force is complex; therefore, hardness can be measured in different ways, such as scratch hardness, indentation hardness, and rebound hardness. Hardness is dependent on ductility, elastic stiffness, plasticity, strain, strength, toughness, viscoelasticity, and viscosity. Common examples of hard matter are ceramics, concrete, certain metals, and superhard materials, which can be contrasted with soft matter.

Contents

Measures

A Vickers hardness tester Vickers-tester.jpg
A Vickers hardness tester

There are three main types of hardness measurements: scratch, indentation, and rebound. Within each of these classes of measurement there are individual measurement scales. For practical reasons conversion tables are used to convert between one scale and another.

Scratch hardness

Scratch hardness is the measure of how resistant a sample is to fracture or permanent plastic deformation due to friction from a sharp object. [1] The principle is that an object made of a harder material will scratch an object made of a softer material. When testing coatings, scratch hardness refers to the force necessary to cut through the film to the substrate. The most common test is Mohs scale, which is used in mineralogy. One tool to make this measurement is the sclerometer.

Another tool used to make these tests is the pocket hardness tester. This tool consists of a scale arm with graduated markings attached to a four-wheeled carriage. A scratch tool with a sharp rim is mounted at a predetermined angle to the testing surface. In order to use it a weight of known mass is added to the scale arm at one of the graduated markings, the tool is then drawn across the test surface. The use of the weight and markings allows a known pressure to be applied without the need for complicated machinery. [2]

Indentation hardness

Indentation hardness measures the resistance of a sample to material deformation due to a constant compression load from a sharp object. Tests for indentation hardness are primarily used in engineering and metallurgy. The tests work on the basic premise of measuring the critical dimensions of an indentation left by a specifically dimensioned and loaded indenter. Common indentation hardness scales are Rockwell, Vickers, Shore, and Brinell, amongst others.

Rebound hardness

Rebound hardness, also known as dynamic hardness, measures the height of the "bounce" of a diamond-tipped hammer dropped from a fixed height onto a material. This type of hardness is related to elasticity. The device used to take this measurement is known as a scleroscope. [3] Two scales that measures rebound hardness are the Leeb rebound hardness test and Bennett hardness scale. Ultrasonic Contact Impedance (UCI) method determines hardness by measuring the frequency of an oscillating rod. The rod consists of a metal shaft with vibrating element and a pyramid-shaped diamond mounted on one end. [4]

Hardening

There are five hardening processes: Hall-Petch strengthening, work hardening, solid solution strengthening, precipitation hardening, and martensitic transformation.

In solid mechanics

Diagram of a stress-strain curve, showing the relationship between stress (force applied per unit area) and strain or deformation of a ductile metal Stress-strain1.svg
Diagram of a stress-strain curve, showing the relationship between stress (force applied per unit area) and strain or deformation of a ductile metal

In solid mechanics, solids generally have three responses to force, depending on the amount of force and the type of material:

Strength is a measure of the extent of a material's elastic range, or elastic and plastic ranges together. This is quantified as compressive strength, shear strength, tensile strength depending on the direction of the forces involved. Ultimate strength is an engineering measure of the maximum load a part of a specific material and geometry can withstand.

Brittleness, in technical usage, is the tendency of a material to fracture with very little or no detectable plastic deformation beforehand. Thus in technical terms, a material can be both brittle and strong. In everyday usage "brittleness" usually refers to the tendency to fracture under a small amount of force, which exhibits both brittleness and a lack of strength (in the technical sense). For perfectly brittle materials, yield strength and ultimate strength are the same, because they do not experience detectable plastic deformation. The opposite of brittleness is ductility.

The toughness of a material is the maximum amount of energy it can absorb before fracturing, which is different from the amount of force that can be applied. Toughness tends to be small for brittle materials, because elastic and plastic deformations allow materials to absorb large amounts of energy.

Hardness increases with decreasing particle size. This is known as the Hall-Petch relationship. However, below a critical grain-size, hardness decreases with decreasing grain size. This is known as the inverse Hall-Petch effect.

Hardness of a material to deformation is dependent on its microdurability or small-scale shear modulus in any direction, not to any rigidity or stiffness properties such as its bulk modulus or Young's modulus. Stiffness is often confused for hardness. [5] [6] Some materials are stiffer than diamond (e.g. osmium) but are not harder, and are prone to spalling and flaking in squamose or acicular habits.

Mechanisms and theory

A representation of the crystal lattice showing the planes of atoms Close-packed spheres.jpg
A representation of the crystal lattice showing the planes of atoms

The key to understanding the mechanism behind hardness is understanding the metallic microstructure, or the structure and arrangement of the atoms at the atomic level. In fact, most important metallic properties critical to the manufacturing of today’s goods are determined by the microstructure of a material. [7] At the atomic level, the atoms in a metal are arranged in an orderly three-dimensional array called a crystal lattice. In reality, however, a given specimen of a metal likely never contains a consistent single crystal lattice. A given sample of metal will contain many grains, with each grain having a fairly consistent array pattern. At an even smaller scale, each grain contains irregularities.

There are two types of irregularities at the grain level of the microstructure that are responsible for the hardness of the material. These irregularities are point defects and line defects. A point defect is an irregularity located at a single lattice site inside of the overall three-dimensional lattice of the grain. There are three main point defects. If there is an atom missing from the array, a vacancy defect is formed. If there is a different type of atom at the lattice site that should normally be occupied by a metal atom, a substitutional defect is formed. If there exists an atom in a site where there should normally not be, an interstitial defect is formed. This is possible because space exists between atoms in a crystal lattice. While point defects are irregularities at a single site in the crystal lattice, line defects are irregularities on a plane of atoms. Dislocations are a type of line defect involving the misalignment of these planes. In the case of an edge dislocation, a half plane of atoms is wedged between two planes of atoms. In the case of a screw dislocation two planes of atoms are offset with a helical array running between them. [8]

In glasses, hardness seems to depend linearly on the number of topological constraints acting between the atoms of the network. [9] Hence, the rigidity theory has allowed predicting hardness values with respect to composition.

Planes of atoms split by an edge dislocation Dislocation edge d2.svg
Planes of atoms split by an edge dislocation

Dislocations provide a mechanism for planes of atoms to slip and thus a method for plastic or permanent deformation. [7] Planes of atoms can flip from one side of the dislocation to the other effectively allowing the dislocation to traverse through the material and the material to deform permanently. The movement allowed by these dislocations causes a decrease in the material's hardness.

The way to inhibit the movement of planes of atoms, and thus make them harder, involves the interaction of dislocations with each other and interstitial atoms. When a dislocation intersects with a second dislocation, it can no longer traverse through the crystal lattice. The intersection of dislocations creates an anchor point and does not allow the planes of atoms to continue to slip over one another [10] A dislocation can also be anchored by the interaction with interstitial atoms. If a dislocation comes in contact with two or more interstitial atoms, the slip of the planes will again be disrupted. The interstitial atoms create anchor points, or pinning points, in the same manner as intersecting dislocations.

By varying the presence of interstitial atoms and the density of dislocations, a particular metal's hardness can be controlled. Although seemingly counter-intuitive, as the density of dislocations increases, there are more intersections created and consequently more anchor points. Similarly, as more interstitial atoms are added, more pinning points that impede the movements of dislocations are formed. As a result, the more anchor points added, the harder the material will become.

Relation between hardness number and stress-strain curve

Careful note should be taken of the relationship between a hardness number and the stress-strain curve exhibited by the material. The latter, which is conventionally obtained via tensile testing, captures the full plasticity response of the material (which is in most cases a metal). It is in fact a dependence of the (true) von Mises plastic strain on the (true) von Mises stress, but this is readily obtained from a nominal stress – nominal strain curve (in the pre-necking regime), which is the immediate outcome of a tensile test. This relationship can be used to describe how the material will respond to almost any loading situation, often by using the Finite Element Method (FEM). This applies to the outcome of an indentation test (with a given size and shape of indenter, and a given applied load).

However, while a hardness number thus depends on the stress-strain relationship, inferring the latter from the former is far from simple and is not attempted in any rigorous way during conventional hardness testing. (In fact, the Indentation Plastometry technique, which involves iterative FEM modelling of an indentation test, does allow a stress-strain curve to be obtained via indentation, but this is outside the scope of conventional hardness testing.) A hardness number is just a semi-quantitative indicator of the resistance to plastic deformation. Although hardness is defined in a similar way for most types of test – usually as the load divided by the contact area – the numbers obtained for a particular material are different for different types of test, and even for the same test with different applied loads. Attempts are sometimes made [11] [12] [13] [14] [15] to identify simple analytical expressions that allow features of the stress-strain curve, particularly the yield stress and Ultimate Tensile Stress (UTS), to be obtained from a particular type of hardness number. However, these are all based on empirical correlations, often specific to particular types of alloy: even with such a limitation, the values obtained are often quite unreliable. The underlying problem is that metals with a range of combinations of yield stress and work hardening characteristics can exhibit the same hardness number. The use of hardness numbers for any quantitative purpose should, at best, be approached with considerable caution.

See also

Related Research Articles

<span class="mw-page-title-main">Structural geology</span> Science of the description and interpretation of deformation in the Earths crust

Structural geology is the study of the three-dimensional distribution of rock units with respect to their deformational histories. The primary goal of structural geology is to use measurements of present-day rock geometries to uncover information about the history of deformation (strain) in the rocks, and ultimately, to understand the stress field that resulted in the observed strain and geometries. This understanding of the dynamics of the stress field can be linked to important events in the geologic past; a common goal is to understand the structural evolution of a particular area with respect to regionally widespread patterns of rock deformation due to plate tectonics.

<span class="mw-page-title-main">Ductility</span> Degree to which a material under stress irreversibly deforms before failure

Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversible upon removing the stress. Ductility is a critical mechanical performance indicator, particularly in applications that require materials to bend, stretch, or deform in other ways without breaking. The extent of ductility can be quantitatively assessed using the percent elongation at break, given by the equation:

<span class="mw-page-title-main">Ultimate tensile strength</span> Maximum stress withstood by stretched material before breaking

Ultimate tensile strength is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials, the ultimate tensile strength is close to the yield point, whereas in ductile materials, the ultimate tensile strength can be higher.

<span class="mw-page-title-main">Plasticity (physics)</span> Non-reversible deformation of a solid material in response to applied forces

In physics and materials science, plasticity is the ability of a solid material to undergo permanent deformation, a non-reversible change of shape in response to applied forces. For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself. In engineering, the transition from elastic behavior to plastic behavior is known as yielding.

<span class="mw-page-title-main">Stress–strain curve</span> Curve representing a materials response to applied forces

In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined. These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength.

The field of strength of materials typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio. In addition, the mechanical element's macroscopic properties such as its length, width, thickness, boundary constraints and abrupt changes in geometry such as holes are considered.

<span class="mw-page-title-main">Dislocation</span> Linear crystallographic defect or irregularity

In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to slide over each other at low stress levels and is known as glide or slip. The crystalline order is restored on either side of a glide dislocation but the atoms on one side have moved by one position. The crystalline order is not fully restored with a partial dislocation. A dislocation defines the boundary between slipped and unslipped regions of material and as a result, must either form a complete loop, intersect other dislocations or defects, or extend to the edges of the crystal. A dislocation can be characterised by the distance and direction of movement it causes to atoms which is defined by the Burgers vector. Plastic deformation of a material occurs by the creation and movement of many dislocations. The number and arrangement of dislocations influences many of the properties of materials.

<span class="mw-page-title-main">Work hardening</span> Strengthening a material through plastic deformation

Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materials. Work hardening may be desirable, undesirable, or inconsequential, depending on the application.

Indentation hardness tests are used in mechanical engineering to determine the hardness of a material to deformation. Several such tests exist, wherein the examined material is indented until an impression is formed; these tests can be performed on a macroscopic or microscopic scale.

<span class="mw-page-title-main">Cottrell atmosphere</span> Concept in materials science

In materials science, the concept of the Cottrell atmosphere was introduced by A. H. Cottrell and B. A. Bilby in 1949 to explain how dislocations are pinned in some metals by boron, carbon, or nitrogen interstitials.

Hardening is a metallurgical metalworking process used to increase the hardness of a metal. The hardness of a metal is directly proportional to the uniaxial yield stress at the location of the imposed strain. A harder metal will have a higher resistance to plastic deformation than a less hard metal.

<span class="mw-page-title-main">Yield (engineering)</span> Phenomenon of deformation due to structural stress

In materials science and engineering, the yield point is the point on a stress–strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as plastic deformation.

In metallurgy and materials science, annealing is a heat treatment that alters the physical and sometimes chemical properties of a material to increase its ductility and reduce its hardness, making it more workable. It involves heating a material above its recrystallization temperature, maintaining a suitable temperature for an appropriate amount of time and then cooling.

<span class="mw-page-title-main">Critical resolved shear stress</span> Component of shear stress necessary to initiate slip in a crystal

In materials science, critical resolved shear stress (CRSS) is the component of shear stress, resolved in the direction of slip, necessary to initiate slip in a grain. Resolved shear stress (RSS) is the shear component of an applied tensile or compressive stress resolved along a slip plane that is other than perpendicular or parallel to the stress axis. The RSS is related to the applied stress by a geometrical factor, m, typically the Schmid factor:

In metallurgy, solid solution strengthening is a type of alloying that can be used to improve the strength of a pure metal. The technique works by adding atoms of one element to the crystalline lattice of another element, forming a solid solution. The local nonuniformity in the lattice due to the alloying element makes plastic deformation more difficult by impeding dislocation motion through stress fields. In contrast, alloying beyond the solubility limit can form a second phase, leading to strengthening via other mechanisms.

In geology, a deformation mechanism is a process occurring at a microscopic scale that is responsible for changes in a material's internal structure, shape and volume. The process involves planar discontinuity and/or displacement of atoms from their original position within a crystal lattice structure. These small changes are preserved in various microstructures of materials such as rocks, metals and plastics, and can be studied in depth using optical or digital microscopy.

Methods have been devised to modify the yield strength, ductility, and toughness of both crystalline and amorphous materials. These strengthening mechanisms give engineers the ability to tailor the mechanical properties of materials to suit a variety of different applications. For example, the favorable properties of steel result from interstitial incorporation of carbon into the iron lattice. Brass, a binary alloy of copper and zinc, has superior mechanical properties compared to its constituent metals due to solution strengthening. Work hardening has also been used for centuries by blacksmiths to introduce dislocations into materials, increasing their yield strengths.

<span class="mw-page-title-main">Grain boundary strengthening</span> Method of strengthening materials by changing grain size

In materials science, grain-boundary strengthening is a method of strengthening materials by changing their average crystallite (grain) size. It is based on the observation that grain boundaries are insurmountable borders for dislocations and that the number of dislocations within a grain has an effect on how stress builds up in the adjacent grain, which will eventually activate dislocation sources and thus enabling deformation in the neighbouring grain as well. By changing grain size, one can influence the number of dislocations piled up at the grain boundary and yield strength. For example, heat treatment after plastic deformation and changing the rate of solidification are ways to alter grain size.

<span class="mw-page-title-main">Ductility (Earth science)</span>

In Earth science, ductility refers to the capacity of a rock to deform to large strains without macroscopic fracturing. Such behavior may occur in unlithified or poorly lithified sediments, in weak materials such as halite or at greater depths in all rock types where higher temperatures promote crystal plasticity and higher confining pressures suppress brittle fracture. In addition, when a material is behaving ductilely, it exhibits a linear stress vs strain relationship past the elastic limit.

References

  1. Wredenberg, Fredrik; PL Larsson (2009). "Scratch testing of metals and polymers: Experiments and numerics". Wear. 266 (1–2): 76. doi:10.1016/j.wear.2008.05.014.
  2. Hoffman Scratch Hardness Tester Archived 2014-03-23 at the Wayback Machine . byk.com
  3. Allen, Robert (2006-12-10). "A guide to rebound hardness and scleroscope test". Archived from the original on 2012-07-18. Retrieved 2008-09-08.
  4. "Novotest".
  5. Jeandron, Michelle (2005-08-25). "Diamonds are not forever". Physics World. Archived from the original on 2009-02-15.
  6. San-Miguel, A.; Blase, P.; Blase, X.; Mélinon, P.; Perez, A.; Itié, J.; Polian, A.; Reny, E.; et al. (1999-05-19). "High Pressure Behavior of Silicon Clathrates: A New Class of Low Compressibility Materials". Physical Review. 83 (25): 5290. Bibcode:1999PhRvL..83.5290S. doi:10.1103/PhysRevLett.83.5290.
  7. 1 2 Haasen, P. (1978). Physical metallurgy. Cambridge [Eng.] ; New York: Cambridge University Press.
  8. Samuel, J. (2009). Introduction to materials science course manual. Madison, Wisconsin: University of Wisconsin-Madison.
  9. Smedskjaer, Morten M.; John C. Mauro; Yuanzheng Yue (2010). "Prediction of Glass Hardness Using Temperature-Dependent Constraint Theory". Phys. Rev. Lett. 105 (11): 2010. Bibcode:2010PhRvL.105k5503S. doi:10.1103/PhysRevLett.105.115503. PMID   20867584.
  10. Leslie, W. C. (1981). The physical metallurgy of steels. Washington: Hemisphere Pub. Corp., New York: McGraw-Hill, ISBN   0070377804.
  11. Tekkaya, AE (2001). "Improved relationship between Vickers hardness and yield stress for cold formed materials". Steel Research. 72 (8): 304–310. doi:10.1002/srin.200100122.
  12. Busby, JT; Hash, MC; Was, GS (2005). "The relationship between hardness and yield stress in irradiated austenitic and ferritic steels". J. Nucl. Mater. 336 (2–3): 267–278. Bibcode:2005JNuM..336..267B. doi:10.1016/j.jnucmat.2004.09.024.
  13. Hashemi, SH (2011). "Strength-hardness statistical correlation in API X65 steel". Mater. Sci. Eng. A. 528 (3): 1648–1655. doi:10.1016/j.msea.2010.10.089.
  14. Tiryakioglu, M (2015). "On the relationship between Vickers hardness and yield stress in Al-Zn-Mg-Cu Alloys". Mater. Sci. Eng. A. 633: 17–19. doi:10.1016/j.msea.2015.02.073.
  15. Matyunin, VM; Marchenkov, AY; Agafonov, RY; Danilin, VV; Karimbekov, MA; Goryachkin, MV; Volkov, PV; Zhgut, DA (2021). "Correlation between the Ultimate Tensile Strength and the Brinell Hardness of Ferrous and Nonferrous Structural Materials". Russian Metallurgy. 2021 (13): 1719–1724. Bibcode:2021RuMet2021.1719M. doi:10.1134/s0036029521130164. S2CID   245856672.

Further reading