Compressive strength

Last updated
Measuring the compressive strength of a steel drum US military drum compression test.jpg
Measuring the compressive strength of a steel drum

In mechanics, compressive strength (or compression strength) is the capacity of a material or structure to withstand loads tending to reduce size (compression). It is opposed to tensile strength which withstands loads tending to elongate, resisting tension (being pulled apart). In the study of strength of materials, compressive strength, tensile strength, and shear strength can be analyzed independently.

Contents

Some materials fracture at their compressive strength limit; others deform irreversibly, so a given amount of deformation may be considered as the limit for compressive load. Compressive strength is a key value for design of structures.

Compressive strength is often measured on a universal testing machine. Measurements of compressive strength are affected by the specific test method and conditions of measurement. Compressive strengths are usually reported in relationship to a specific technical standard.

Introduction

When a specimen of material is loaded in such a way that it extends it is said to be in tension. On the other hand, if the material compresses and shortens it is said to be in compression.

On an atomic level, the molecules or atoms are forced apart when in tension whereas in compression they are forced together. Since atoms in solids always try to find an equilibrium position, and distance between other atoms, forces arise throughout the entire material which oppose both tension or compression. The phenomena prevailing on an atomic level are therefore similar.

The "strain" is the relative change in length under applied stress; positive strain characterizes an object under tension load which tends to lengthen it, and a compressive stress that shortens an object gives negative strain. Tension tends to pull small sideways deflections back into alignment, while compression tends to amplify such deflection into buckling.

Compressive strength is measured on materials, components, [1] and structures. [2]

The ultimate compressive strength of a material is the maximum uniaxial compressive stress that it can withstand before complete failure. This value is typically determined through a compressive test conducted using a universal testing machine. During the test, a steadily increasing uniaxial compressive load is applied to the test specimen until it fails.The specimen, often cylindrical in shape, experiences both axial shortening and lateral expansion under the load. As the load increases, the machine records the corresponding deformation, plotting a stress-strain curve that would look similar to the following:

True stress-strain curve for a typical specimen Engineering stress strain.svg
True stress-strain curve for a typical specimen

The compressive strength of the material corresponds to the stress at the red point shown on the curve. In a compression test, there is a linear region where the material follows Hooke's law. Hence, for this region, where, this time, E refers to the Young's modulus for compression. In this region, the material deforms elastically and returns to its original length when the stress is removed.

This linear region terminates at what is known as the yield point. Above this point the material behaves plastically and will not return to its original length once the load is removed.

There is a difference between the engineering stress and the true stress. By its basic definition the uniaxial stress is given by:

where F is load applied [N] and A is area [m2].

As stated, the area of the specimen varies on compression. In reality therefore the area is some function of the applied load i.e. A = f (F). Indeed, stress is defined as the force divided by the area at the start of the experiment. This is known as the engineering stress, and is defined bywhere A0 is the original specimen area [m2].

Correspondingly, the engineering strain is defined bywhere l is the current specimen length [m] and l0 is the original specimen length [m]. True strain, also known as logarithmic strain or natural strain, provides a more accurate measure of large deformations, such as in materials like ductile metals [3] The compressive strength therefore corresponds to the point on the engineering stress–strain curve defined by

where F* is the load applied just before crushing and l* is the specimen length just before crushing.

Deviation of engineering stress from true stress

Barrelling Barelling.svg
Barrelling

When a uniaxial compressive load is applied to an object it will become shorter and spread laterally so its original cross sectional area () increases to the loaded area () [3] . Thus the true stress () deviates from engineering stress (). Tests that measure the engineering stress at the point of failure in a material are often sufficient for many routine applications, such as quality control in concrete production. However, determining the true stress in materials under compressive loads is important for research focused on the properties on new materials and their processing.

The geometry of test specimens and friction can significantly influence the results of compressive stress tests [3] [4] . Friction at the contact points between the testing machine and the specimen can restrict the lateral expansion at its ends (also known as 'barreling') leading to non-uniform stress distribution. This is discussed in section on contact with friction.

Frictionless contact

With a compressive load on a test specimen it will become shorter and spread laterally so its cross sectional area increases and the true compressive stress isand the engineering stress isThe cross sectional area () and consequently the stress ( ) are uniform along the length of the specimen because there are no external lateral constraints. This condition represents an ideal test condition. For all practical purposes the volume of a high bulk modulus material (e.g. solid metals) is not changed by uniaxial compression [3] . SoUsing the strain equation from above [3] andNote that compressive strain is negative, so the true stress ( ) is less than the engineering stress (). The true strain () can be used in these formulas instead of engineering strain () when the deformation is large.

Contact with friction

As the load is applied, friction at the interface between the specimen and the test machine restricts the lateral expansion at its ends. This has two effects:

Various methods can be used to reduce the friction according to the application:

Three methods can be used to compensate for the effects of friction on the test result:

  1. Correction formulas
  2. Geometric extrapolation
  3. Finite element analysis

Correction formulas

Compression Test Specimen.jpg

Round test specimens made from ductile materials with a high bulk modulus, such as metals, tend to form a barrel shape under axial compressive loading due to frictional contact at the ends. For this case the equivalent true compressive stress for this condition can be calculated using [4] where

is the loaded length of the test specimen,
is the loaded diameter of the test specimen at its ends, and
is the maximum loaded diameter of the test specimen.

Note that if there is frictionless contact between the ends of the specimen and the test machine, the bulge radius becomes infinite () and [4] . In this case, the formulas yield the same result as because changes according to the ratio .

The parameters () obtained from a test result can be used with these formulas to calculate the equivalent true stress at failure.

Specimen shape effect Compression Test Specimen Shape Effect.jpg
Specimen shape effect

The graph of specimen shape effect shows how the ratio of true stress to engineering stress (σ´/σe) varies with the aspect ratio of the test specimen (). The curves were calculated using the formulas provided above, based on the specific values presented in the table for specimen shape effect calculations. For the curves where end restraint is applied to the specimens, they are assumed to be fully laterally restrained, meaning that the coefficient of friction at the contact points between the specimen and the testing machine is greater than or equal to one (μ ⩾ 1). As shown in the graph, as the relative length of the specimen increases (), the ratio of true to engineering stress () approaches the value corresponding to frictionless contact between the specimen and the machine, which is the ideal test condition.

Specimen shape effect calculations
FrictionlessLaterally Constrained
Constant volume
Equal diameters
Solve for
Equivalent stress ratio
Engineering stress
Average stress
Average stress ratio
True strain

Geometric extrapolation

Illustration of Extrapolation.jpg

As shown in the section on correction formulas, as the length of test specimens is increased and their aspect ratio approaches zero (), the compressive stresses (σ) approach the true value (σ′). However, conducting tests with excessively long specimens is impractical, as they would fail by buckling before reaching the material's true compressive strength. To overcome this, a series of tests can be conducted using specimens with varying aspect ratios, and the true compressive strength can then be determined through extrapolation [3] .



Finite element analysis

Comparison of compressive and tensile strengths

Concrete and ceramics typically have much higher compressive strengths than tensile strengths. Composite materials, such as glass fiber epoxy matrix composite, tend to have higher tensile strengths than compressive strengths. Metals are difficult to test to failure in tension vs compression. In compression metals fail from buckling/crumbling/45° shear which is much different (though higher stresses) than tension which fails from defects or necking down.

Compressive failure modes

A cylinder being crushed under a UTM Universal Testing Machine.jpg
A cylinder being crushed under a UTM

If the ratio of the length to the effective radius of the material loaded in compression (Slenderness ratio) is too high, it is likely that the material will fail under buckling. Otherwise, if the material is ductile yielding usually occurs which displaying the barreling effect discussed above. A brittle material in compression typically will fail by axial splitting, shear fracture, or ductile failure depending on the level of constraint in the direction perpendicular to the direction of loading. If there is no constraint (also called confining pressure), the brittle material is likely to fail by axial splitting. Moderate confining pressure often results in shear fracture, while high confining pressure often leads to ductile failure, even in brittle materials. [5]

Axial Splitting relieves elastic energy in brittle material by releasing strain energy in the directions perpendicular to the applied compressive stress. As defined by a materials Poisson ratio a material compressed elastically in one direction will strain in the other two directions. During axial splitting a crack may release that tensile strain by forming a new surface parallel to the applied load. The material then proceeds to separate in two or more pieces. Hence the axial splitting occurs most often when there is no confining pressure, i.e. a lesser compressive load on axis perpendicular to the main applied load. [6] The material now split into micro columns will feel different frictional forces either due to inhomogeneity of interfaces on the free end or stress shielding. In the case of stress shielding, inhomogeneity in the materials can lead to different Young's modulus. This will in turn cause the stress to be disproportionately distributed, leading to a difference in frictional forces. In either case this will cause the material sections to begin bending and lead to ultimate failure. [7]

Microcracking

Figure 1: microcrack nucleation and propagation Customhw406figure.jpg
Figure 1: microcrack nucleation and propagation

Microcracks are a leading cause of failure under compression for brittle and quasi-brittle materials. Sliding along crack tips leads to tensile forces along the tip of the crack. Microcracks tend to form around any pre-existing crack tips. In all cases it is the overall global compressive stress interacting with local microstructural anomalies to create local areas of tension.  Microcracks can stem from a few factors.

  1. Porosity is the controlling factor for compressive strength in many materials. Microcracks can form around pores, until about they reach approximately the same size as their parent pores. (a)
  2. Stiff inclusions within a material such as a precipitate can cause localized areas of tension. (b) When inclusions are grouped up or larger, this effect can be amplified.
  3. Even without pores or stiff inclusions, a material can develop microcracks between weak inclined (relative to applied stress) interfaces. These interfaces can slip and create a secondary crack. These secondary cracks can continue opening, as the slip of the original interfaces keeps opening the secondary crack (c). The slipping of interfaces alone is not solely responsible for secondary crack growth as inhomogeneities in the material's Young's modulus can lead to an increase in effective misfit strain. Cracks that grow this way are known as wingtip microcracks. [8]

The growth of microcracks is not the growth of the original crack or imperfection. The cracks that nucleate do so perpendicular to the original crack and are known as secondary cracks. [9] The figure below emphasizes this point for wingtip cracks.

These secondary cracks can grow to as long as 10-15 times the length of the original cracks in simple (uniaxial) compression. However, if a transverse compressive load is applied. The growth is limited to a few integer multiples of the original crack's length. [9]

A secondary crack growing from the tip of a preexisting crack Wingtipmicrocrack.jpg
A secondary crack growing from the tip of a preexisting crack
shear band formation Shear band.jpg
shear band formation

Shear bands

If the sample size is large enough such that the worse defect's secondary cracks cannot grow large enough to break the sample, other defects within the sample will begin to grow secondary cracks as well. This will occur homogeneously over the entire sample. These micro-cracks form an echelon that can form an “intrinsic” fracture behavior, the nucleus of a shear fault instability. Shown right:

Eventually this leads the material deforming non-homogeneously. That is the strain caused by the material will no longer vary linearly with the load. Creating localized shear bands on which the material will fail according to deformation theory. “The onset of localized banding does not necessarily constitute final failure of a material element, but it presumably is at least the beginning of the primary failure process under compressive loading.” [10]

Typical values

MaterialRs (MPa)
Steel 250-1,500
Porcelain 20-1,000 [11]
Bone 106-131 [12]
Concrete 17-70 [13]
Ice (−5 to −20 °C)5–25 [14]
Ice (0 °C)3 [15]
Styrofoam ~1

Compressive strength of concrete

Compressive strength test of concrete in UTM Compressive strength test.gif
Compressive strength test of concrete in UTM

For designers, compressive strength is one of the most important engineering properties of concrete. It is standard industrial practice that the compressive strength of a given concrete mix is classified by grade. Cubic or cylindrical samples of concrete are tested under a compression testing machine to measure this value. Test requirements vary by country based on their differing design codes. Use of a Compressometer is common. As per Indian codes, compressive strength of concrete is defined as:

Field cured concrete in cubic steel molds (Greece) Concrete cube mold.jpg
Field cured concrete in cubic steel molds (Greece)

The compressive strength of concrete is given in terms of the characteristic compressive strength of 150 mm size cubes tested after 28 days (fck). In field, compressive strength tests are also conducted at interim duration i.e. after 7 days to verify the anticipated compressive strength expected after 28 days. The same is done to be forewarned of an event of failure and take necessary precautions. The characteristic strength is defined as the strength of the concrete below which not more than 5% of the test results are expected to fall. [16]

For design purposes, this compressive strength value is restricted by dividing with a factor of safety, whose value depends on the design philosophy used.

The construction industry is often involved in a wide array of testing. In addition to simple compression testing, testing standards such as ASTM C39, ASTM C109, ASTM C469, ASTM C1609 are among the test methods that can be followed to measure the mechanical properties of concrete. When measuring the compressive strength and other material properties of concrete, testing equipment that can be manually controlled or servo-controlled may be selected depending on the procedure followed. Certain test methods specify or limit the loading rate to a certain value or a range, whereas other methods request data based on test procedures run at very low rates. [17]

Ultra-high performance concrete (UHPC) is defined as having a compressive strength over 150 MPa. [18]

See also

Related Research Articles

In engineering, deformation may be elastic or plastic. If the deformation is negligible, the object is said to be rigid.

<span class="mw-page-title-main">Stress–strain curve</span> Curve representing a materials response to applied forces

In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined. These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength.

<span class="mw-page-title-main">Fracture</span> Split of materials or structures under stress

Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band, or dislocation.

The field of strength of materials typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio. In addition, the mechanical element's macroscopic properties such as its length, width, thickness, boundary constraints and abrupt changes in geometry such as holes are considered.

<span class="mw-page-title-main">Toughness</span> Material ability to absorb energy and plastically deform without fracturing

In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing. Toughness is the strength with which the material opposes rupture. One definition of material toughness is the amount of energy per unit volume that a material can absorb before rupturing. This measure of toughness is different from that used for fracture toughness, which describes the capacity of materials to resist fracture. Toughness requires a balance of strength and ductility.

<span class="mw-page-title-main">Fracture mechanics</span> Study of propagation of cracks in materials

Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.

<span class="mw-page-title-main">Work hardening</span> Strengthening a material through plastic deformation

Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materials. Work hardening may be desirable, undesirable, or inconsequential, depending on the application.

<span class="mw-page-title-main">Fracture toughness</span> Stress intensity factor at which a cracks propagation increases drastically

In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.

<span class="mw-page-title-main">Three-point flexural test</span> Standard procedure for measuring modulus of elasticity in bending

The three-point bending flexural test provides values for the modulus of elasticity in bending , flexural stress , flexural strain and the flexural stress–strain response of the material. This test is performed on a universal testing machine with a three-point or four-point bend fixture. The main advantage of a three-point flexural test is the ease of the specimen preparation and testing. However, this method has also some disadvantages: the results of the testing method are sensitive to specimen and loading geometry and strain rate.

<span class="mw-page-title-main">Fracture (geology)</span> Geologic discontinuity feature, often a joint or fault

A fracture is any separation in a geologic formation, such as a joint or a fault that divides the rock into two or more pieces. A fracture will sometimes form a deep fissure or crevice in the rock. Fractures are commonly caused by stress exceeding the rock strength, causing the rock to lose cohesion along its weakest plane. Fractures can provide permeability for fluid movement, such as water or hydrocarbons. Highly fractured rocks can make good aquifers or hydrocarbon reservoirs, since they may possess both significant permeability and fracture porosity.

Material failure theory is an interdisciplinary field of materials science and solid mechanics which attempts to predict the conditions under which solid materials fail under the action of external loads. The failure of a material is usually classified into brittle failure (fracture) or ductile failure (yield). Depending on the conditions most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile.

Thermo-mechanical fatigue is the overlay of a cyclical mechanical loading, that leads to fatigue of a material, with a cyclical thermal loading. Thermo-mechanical fatigue is an important point that needs to be considered, when constructing turbine engines or gas turbines.

In solid mechanics, the Johnson–Holmquist damage model is used to model the mechanical behavior of damaged brittle materials, such as ceramics, rocks, and concrete, over a range of strain rates. Such materials usually have high compressive strength but low tensile strength and tend to exhibit progressive damage under load due to the growth of microfractures.

<span class="mw-page-title-main">Tensile testing</span> Test procedure to determine mechanical properties of a specimen

Tensile testing, also known as tension testing, is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials.

<span class="mw-page-title-main">Size effect on structural strength</span> Deviation with the scale in the theories of elastic or plastic structures

According to the classical theories of elastic or plastic structures made from a material with non-random strength (ft), the nominal strength (σN) of a structure is independent of the structure size (D) when geometrically similar structures are considered. Any deviation from this property is called the size effect. For example, conventional strength of materials predicts that a large beam and a tiny beam will fail at the same stress if they are made of the same material. In the real world, because of size effects, a larger beam will fail at a lower stress than a smaller beam.

Creep and shrinkage of concrete are two physical properties of concrete. The creep of concrete, which originates from the calcium silicate hydrates (C-S-H) in the hardened Portland cement paste, is fundamentally different from the creep of metals and polymers. Unlike the creep of metals, it occurs at all stress levels and, within the service stress range, is linearly dependent on the stress if the pore water content is constant. Unlike the creep of polymers and metals, it exhibits multi-months aging, caused by chemical hardening due to hydration which stiffens the microstructure, and multi-year aging, caused by long-term relaxation of self-equilibrated micro-stresses in the nano-porous microstructure of the C-S-H. If concrete is fully dried, it does not creep, but it is next to impossible to dry concrete fully without severe cracking.

<span class="mw-page-title-main">Rock mass plasticity</span>

Plasticity theory for rocks is concerned with the response of rocks to loads beyond the elastic limit. Historically, conventional wisdom has it that rock is brittle and fails by fracture while plasticity is identified with ductile materials. In field scale rock masses, structural discontinuities exist in the rock indicating that failure has taken place. Since the rock has not fallen apart, contrary to expectation of brittle behavior, clearly elasticity theory is not the last word.

The four-point flexural test provides values for the modulus of elasticity in bending , flexural stress , flexural strain and the flexural stress-strain response of the material. This test is very similar to the three-point bending flexural test. The major difference being that with the addition of a fourth bearing the portion of the beam between the two loading points is put under maximum stress, as opposed to only the material right under the central bearing in the case of three-point bending.

The microplane model, conceived in 1984, is a material constitutive model for progressive softening damage. Its advantage over the classical tensorial constitutive models is that it can capture the oriented nature of damage such as tensile cracking, slip, friction, and compression splitting, as well as the orientation of fiber reinforcement. Another advantage is that the anisotropy of materials such as gas shale or fiber composites can be effectively represented. To prevent unstable strain localization, this model must be used in combination with some nonlocal continuum formulation. Prior to 2000, these advantages were outweighed by greater computational demands of the material subroutine, but thanks to huge increase of computer power, the microplane model is now routinely used in computer programs, even with tens of millions of finite elements.

In materials science, toughening refers to the process of making a material more resistant to the propagation of cracks. When a crack propagates, the associated irreversible work in different materials classes is different. Thus, the most effective toughening mechanisms differ among different materials classes. The crack tip plasticity is important in toughening of metals and long-chain polymers. Ceramics have limited crack tip plasticity and primarily rely on different toughening mechanisms.

References

  1. Urbanek, T.; Lee, S.; Johnson, C. "Column Compression Strength of Tubular Packaging Forms Made of Paper" (PDF). Journal of Testing and Evaluation. 34 (6): 31–40. Archived from the original (PDF) on 14 May 2014. Retrieved 13 May 2014.
  2. Ritter, M. A.; Oliva, M. G. (1990), "9, Design of Longitudinal Stress-Laminated Deck Superstructures" (PDF), Timber Bridges: Design, Construction, Inspection, and Maintenance, US Dept of Agriculture, Forest Products Laboratory (published 2010), archived from the original (PDF) on 5 March 2021, retrieved 13 May 2014
  3. 1 2 3 4 5 6 Benham, P. P.; Warnock, F. V. (1973). Mechanics of Solids and Structures. Pitman. ISBN   0 273 36191 0.
  4. 1 2 3 Ettouney, D.; Hardt, D. E. (August 1983). "A method for in-process failure prediction in cold upset forging". Journal of Engineering for Industry. 105: 161–167.
  5. Fischer-Cripps, Anthony C. (2007). Introduction to contact mechanics (2nd ed.). New York: Springer. p. 156. ISBN   978-0-387-68188-7. OCLC   187014877.
  6. Ashby, M., and C. Sammis. “The Damage Mechanics of Brittle Solids in Compression.” Pure and Applied Geophysics, vol. 133, no. 3, 1990, pp. 489–521., doi:10.1007/bf00878002.
  7. Renshaw, Carl E., and Erland M. Schulson. “Universal Behaviour in Compressive Failure of Brittle Materials.” Nature, vol. 412, no. 6850, 2001, pp. 897–900., doi:10.1038/35091045.
  8. Bažant, Zdeněk P., and Yuyin Xiang. “Size Effect in Compression Fracture: Splitting Crack Band Propagation.” Journal of Engineering Mechanics, vol. 123, no. 2, Feb. 1997, pp. 162–172., doi:10.1061/(asce)0733-9399(1997)123:2(162).
  9. 1 2 Horii, H., and S. Nemat-Nasser. “Compression-Induced Microcrack Growth in Brittle Solids: Axial Splitting and Shear Failure.” Journal of Geophysical Research, vol. 90, no. B4, 10 Mar. 1985, p. 3105., doi:10.1029/jb090ib04p03105.
  10. Fracture in Compression of Brittle Solids. The National Academies Press, 1983, doi:10.17226/19491.
  11. Johnston, W. M.; O'Brien, W. J. (August 1980). "The shear strength of dental porcelain". Journal of Dental Research. 59 (8): 1409–1411. doi:10.1177/00220345800590080901. hdl: 2027.42/66871 . ISSN   0022-0345. PMID   6931115. S2CID   135828446.
  12. "Bone Strength - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2023-08-25.
  13. "CIP 35 - Testing Compressive Strength of Concrete" (PDF). Concrete in Practice. National Ready Mixed Concrete Association.
  14. Petrovic, J. J. (2003-01-01). "Review Mechanical properties of ice and snow". Journal of Materials Science. 38 (1): 1–6. doi:10.1023/A:1021134128038. ISSN   1573-4803. S2CID   135765876.
  15. Kermani, Majid; Farzaneh, Masoud; Gagnon, Robert (2007-09-01). "Compressive strength of atmospheric ice". Cold Regions Science and Technology. 49 (3): 195–205. Bibcode:2007CRST...49..195K. doi:10.1016/j.coldregions.2007.05.003. ISSN   0165-232X.
  16. "Compressive Strength of Concrete & Concrete Cubes | What | How | CivilDigital |". 2016-07-07. Retrieved 2016-09-20.
  17. "Concrete Testing: Manual vs. Automated Operation".
  18. "Multiscale structure-property relationships of ultra-high performance concrete - EVOCD". icme.hpc.msstate.edu. Retrieved 2022-09-15.