This article may be confusing or unclear to readers.(December 2023) |
The bulk modulus ( or or ) of a substance is a measure of the resistance of a substance to bulk compression. It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume. [1]
Other moduli describe the material's response (strain) to other kinds of stress: the shear modulus describes the response to shear stress, and Young's modulus describes the response to normal (lengthwise stretching) stress. For a fluid, only the bulk modulus is meaningful. For a complex anisotropic solid such as wood or paper, these three moduli do not contain enough information to describe its behaviour, and one must use the full generalized Hooke's law. The reciprocal of the bulk modulus at fixed temperature is called the isothermal compressibility.
The bulk modulus (which is usually positive) can be formally defined by the equation
where is pressure, is the initial volume of the substance, and denotes the derivative of pressure with respect to volume. Since the volume is inversely proportional to the density, it follows that
where is the initial density and denotes the derivative of pressure with respect to density. The inverse of the bulk modulus gives a substance's compressibility. Generally the bulk modulus is defined at constant temperature as the isothermal bulk modulus, but can also be defined at constant entropy as the adiabatic bulk modulus.
Strictly speaking, the bulk modulus is a thermodynamic quantity, and in order to specify a bulk modulus it is necessary to specify how the pressure varies during compression: constant-temperature (isothermal ), constant-entropy (isentropic ), and other variations are possible. Such distinctions are especially relevant for gases.
For an ideal gas, an isentropic process has:
where is the heat capacity ratio. Therefore, the isentropic bulk modulus is given by
Similarly, an isothermal process of an ideal gas has:
Therefore, the isothermal bulk modulus is given by
When the gas is not ideal, these equations give only an approximation of the bulk modulus. In a fluid, the bulk modulus and the density determine the speed of sound (pressure waves), according to the Newton-Laplace formula
In solids, and have very similar values. Solids can also sustain transverse waves: for these materials one additional elastic modulus, for example the shear modulus, is needed to determine wave speeds.
It is possible to measure the bulk modulus using powder diffraction under applied pressure. It is a property of a fluid which shows its ability to change its volume under its pressure.
Material | Bulk modulus in GPa | Bulk modulus in Mpsi |
---|---|---|
Diamond (at 4K) [2] | 443 | 64 |
Alumina (γ phase) [3] | 162 ± 14 | 23.5 |
Steel | 160 | 23.2 |
Limestone | 65 | 9.4 |
Granite | 50 | 7.3 |
Glass (see also diagram below table) | 35 to 55 | 5.8 |
Graphite 2H (single crystal) [4] | 34 | 4.9 |
Sodium chloride | 24.42 | 3.542 |
Shale | 10 | 1.5 |
Chalk | 9 | 1.3 |
Rubber [5] | 1.5 to 2 | 0.22 to 0.29 |
Sandstone | 0.7 | 0.1 |
A material with a bulk modulus of 35 GPa loses one percent of its volume when subjected to an external pressure of 0.35 GPa (~3500 bar) (assumed constant or weakly pressure dependent bulk modulus).
β-Carbon nitride | 427±15 GPa [7] (predicted) |
Water | 2.2 GPa (0.32 Mpsi) (value increases at higher pressures) |
Methanol | 823 MPa (at 20 °C and 1 Atm) |
Solid helium | 50 MPa (approximate) |
Air | 142 kPa (adiabatic bulk modulus [or isentropic bulk modulus]) |
Air | 101 kPa (isothermal bulk modulus) |
Spacetime | 4.5×1031 Pa (for typical gravitational wave frequencies of 100Hz) [8] |
Since linear elasticity is a direct result of interatomic interaction, it is related to the extension/compression of bonds. It can then be derived from the interatomic potential for crystalline materials. [9] First, let us examine the potential energy of two interacting atoms. Starting from very far points, they will feel an attraction towards each other. As they approach each other, their potential energy will decrease. On the other hand, when two atoms are very close to each other, their total energy will be very high due to repulsive interaction. Together, these potentials guarantee an interatomic distance that achieves a minimal energy state. This occurs at some distance r0, where the total force is zero:
Where U is interatomic potential and r is the interatomic distance. This means the atoms are in equilibrium.
To extend the two atoms approach into solid, consider a simple model, say, a 1-D array of one element with interatomic distance of r, and the equilibrium distance is r0. Its potential energy-interatomic distance relationship has similar form as the two atoms case, which reaches minimal at r0, The Taylor expansion for this is:
At equilibrium, the first derivative is 0, so the dominant term is the quadratic one. When displacement is small, the higher order terms should be omitted. The expression becomes:
Which is clearly linear elasticity.
Note that the derivation is done considering two neighboring atoms, so the Hook's coefficient is:
This form can be easily extended to 3-D case, with volume per atom(Ω) in place of interatomic distance.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s, or 1 km in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating.
In thermodynamics and fluid mechanics, the compressibility is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure change. In its simple form, the compressibility may be expressed as
An isentropic process is an idealized thermodynamic process that is both adiabatic and reversible. The work transfers of the system are frictionless, and there is no net transfer of heat or matter. Such an idealized process is useful in engineering as a model of and basis of comparison for real processes. This process is idealized because reversible processes do not occur in reality; thinking of a process as both adiabatic and reversible would show that the initial and final entropies are the same, thus, the reason it is called isentropic. Thermodynamic processes are named based on the effect they would have on the system. Even though in reality it is not necessarily possible to carry out an isentropic process, some may be approximated as such.
In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.
In fluid dynamics, the pressure coefficient is a dimensionless number which describes the relative pressures throughout a flow field. The pressure coefficient is used in aerodynamics and hydrodynamics. Every point in a fluid flow field has its own unique pressure coefficient, Cp.
A radiative zone is a layer of a star's interior where energy is primarily transported toward the exterior by means of radiative diffusion and thermal conduction, rather than by convection. Energy travels through the radiative zone in the form of electromagnetic radiation as photons.
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure to heat capacity at constant volume. It is sometimes also known as the isentropic expansion factor and is denoted by γ (gamma) for an ideal gas or κ (kappa), the isentropic exponent for a real gas. The symbol γ is used by aerospace and chemical engineers. where C is the heat capacity, the molar heat capacity, and c the specific heat capacity of a gas. The suffixes P and V refer to constant-pressure and constant-volume conditions respectively.
The Ostwald–Freundlich equation governs boundaries between two phases; specifically, it relates the surface tension of the boundary to its curvature, the ambient temperature, and the vapor pressure or chemical potential in the two phases.
In condensed matter, Grüneisen parameterγ is a dimensionless thermodynamic parameter named after German physicist Eduard Grüneisen, whose original definition was formulated in terms of the phonon nonlinearities.
The Jeans instability is a concept in astrophysics that describes an instability that leads to the gravitational collapse of a cloud of gas or dust. It causes the collapse of interstellar gas clouds and subsequent star formation. It occurs when the internal gas pressure is not strong enough to prevent the gravitational collapse of a region filled with matter. It is named after James Jeans.
Acoustic waves are a type of energy propagation that travels through a medium, such as air, water, or solid objects, by means of adiabatic compression and expansion. Key quantities describing these waves include acoustic pressure, particle velocity, particle displacement, and acoustic intensity. The speed of acoustic waves depends on the medium's properties, such as density and elasticity, with sound traveling at approximately 343 meters per second in air, 1480 meters per second in water, and varying speeds in solids. Examples of acoustic waves include audible sound from speakers, seismic waves causing ground vibrations, and ultrasound used for medical imaging. Understanding acoustic waves is crucial in fields like acoustics, physics, engineering, and medicine, with applications in sound design, noise reduction, and diagnostic imaging.
A hydrogen-like atom (or hydrogenic atom) is any atom or ion with a single valence electron. These atoms are isoelectronic with hydrogen. Examples of hydrogen-like atoms include, but are not limited to, hydrogen itself, all alkali metals such as Rb and Cs, singly ionized alkaline earth metals such as Ca+ and Sr+ and other ions such as He+, Li2+, and Be3+ and isotopes of any of the above. A hydrogen-like atom includes a positively charged core consisting of the atomic nucleus and any core electrons as well as a single valence electron. Because helium is common in the universe, the spectroscopy of singly ionized helium is important in EUV astronomy, for example, of DO white dwarf stars.
The Cauchy number (Ca) is a dimensionless number in continuum mechanics used in the study of compressible flows. It is named after the French mathematician Augustin Louis Cauchy. When the compressibility is important the elastic forces must be considered along with inertial forces for dynamic similarity. Thus, the Cauchy Number is defined as the ratio between inertial and the compressibility force in a flow and can be expressed as
An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.
In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.
In fluid mechanics, isentropic nozzle flow describes the movement of a fluid through a narrow opening without an increase in entropy.
Von Kármán swirling flow is a flow created by a uniformly rotating infinitely long plane disk, named after Theodore von Kármán who solved the problem in 1921. The rotating disk acts as a fluid pump and is used as a model for centrifugal fans or compressors. This flow is classified under the category of steady flows in which vorticity generated at a solid surface is prevented from diffusing far away by an opposing convection, the other examples being the Blasius boundary layer with suction, stagnation point flow etc.
In fluid dynamics, Hicks equation, sometimes also referred as Bragg–Hawthorne equation or Squire–Long equation, is a partial differential equation that describes the distribution of stream function for axisymmetric inviscid fluid, named after William Mitchinson Hicks, who derived it first in 1898. The equation was also re-derived by Stephen Bragg and William Hawthorne in 1950 and by Robert R. Long in 1953 and by Herbert Squire in 1956. The Hicks equation without swirl was first introduced by George Gabriel Stokes in 1842. The Grad–Shafranov equation appearing in plasma physics also takes the same form as the Hicks equation.
{{cite book}}
: CS1 maint: multiple names: authors list (link)Conversion formulae | |||||||
---|---|---|---|---|---|---|---|
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part). | |||||||
3D formulae | Notes | ||||||
There are two valid solutions. | |||||||
Cannot be used when | |||||||
2D formulae | Notes | ||||||
Cannot be used when | |||||||