Temperature | |
---|---|
Annual mean temperature around the world | |
Common symbols | T |
SI unit | K |
Other units | °C, °F, °R |
Intensive? | yes |
Derivations from other quantities | , |
Dimension | Θ |
Thermodynamics | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
The classical Carnot heat engine | ||||||||||||
| ||||||||||||
A temperature expresses hot and cold, as measured with a thermometer. In physics, hotness is a body's ability to impart energy as heat to another body that is colder.
Measurement is the assignment of a number to a characteristic of an object or event, which can be compared with other objects or events. The scope and application of measurement are dependent on the context and discipline. In the natural sciences and engineering, measurements do not apply to nominal properties of objects or events, which is consistent with the guidelines of the International vocabulary of metrology published by the International Bureau of Weights and Measures. However, in other fields such as statistics as well as the social and behavioral sciences, measurements can have multiple levels, which would include nominal, ordinal, interval and ratio scales.
A thermometer is a device that measures temperature or a temperature gradient. A thermometer has two important elements: (1) a temperature sensor in which some change occurs with a change in temperature; and (2) some means of converting this change into a numerical value. Thermometers are widely used in technology and industry to monitor processes, in meteorology, in medicine, and in scientific research.
In thermodynamics, heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter. The mechanisms include conduction, through direct contact of immobile bodies, or through a wall or barrier that is impermeable to matter; or radiation between separated bodies; or isochoric mechanical work done by the surroundings on the system of interest; or Joule heating by an electric current driven through the system of interest by an external system; or a combination of these. When there is a suitable path between two systems with different temperatures, heat transfer occurs necessarily, immediately, and spontaneously from the hotter to the colder system. Thermal conduction occurs by the stochastic (random) motion of microscopic particles. In contrast, thermodynamic work is defined by mechanisms that act macroscopically and directly on the system's whole-body state variables; for example, change of the system's volume through a piston's motion with externally measurable force; or change of the system's internal electric polarization through an externally measurable change in electric field. The definition of heat transfer does not require that the process be in any sense smooth. For example, a bolt of lightning may transfer heat to a body.
In a body in which there are processes of chemical reaction and flow of matter, temperature may vary over its parts, and over time, as measured by a suitably small and rapidly responding thermometer, and may depend also on the match of the processes to the characteristics of the thermometer.
There are various temperature scales that nearly or approximately agree with one another, but differ slightly because of the various characteristics of particular thermometric substances. The most commonly used scales are the Celsius scale (formerly called centigrade) (denoted °C), Fahrenheit scale (denoted °F), and Kelvin scale (denoted K).
This is a collection of temperature conversion formulas and comparisons among eight different temperature scales, several of which have long been obsolete.
The Celsius scale, also known as the centigrade scale, is a temperature scale used by the International System of Units (SI). As an SI derived unit, it is used worldwide. In the United States, the Bahamas, Belize, the Cayman Islands and Liberia however, Fahrenheit remains the preferred scale for everyday temperature measurement. The degree Celsius can refer to a specific temperature on the Celsius scale or a unit to indicate a difference between two temperatures or an uncertainty. It is named after the Swedish astronomer Anders Celsius (1701–1744), who developed a similar temperature scale. Before being renamed to honor Anders Celsius in 1948, the unit was called centigrade, from the Latin centum, which means 100, and gradus, which means steps.
The Fahrenheit scale is a temperature scale based on one proposed in 1724 by German physicist Daniel Gabriel Fahrenheit (1686–1736). It uses the degree Fahrenheit as the unit. Several accounts of how he originally defined his scale exist. The lower defining point, 0 ℉, was established as the freezing temperature of a solution of brine made from equal parts of ice, water and a salt. Further limits were established as the melting point of ice (32 ℉) and his best estimate of the average human body temperature. The scale is now usually defined by two fixed points: the temperature at which water freezes into ice is defined as 32 ℉, and the boiling point of water is defined to be 212 ℉, a 180 ℉ separation, as defined at sea level and standard atmospheric pressure.
When a body has no macroscopic chemical reactions or flows of matter or energy, it is said to be in its own internal state of thermodynamic equilibrium. Its temperature is uniform in space and unchanging in time. Then, referring to the Boltzmann constant, a temperature scale is defined and said to be absolute because it is independent of the characteristics of particular thermometric substances and thermometer mechanisms. This is the Kelvin or thermodynamic scale, widely used in science and technology. The kelvin (the word is spelled with a lower-case k) is the unit of temperature in the International System of Units (SI). The thermodynamic temperature is always positive, relative to an absolute zero.
Thermodynamic equilibrium is an axiomatic concept of thermodynamics. It is an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable walls. In thermodynamic equilibrium there are no net macroscopic flows of matter or of energy, either within a system or between systems.
The Boltzmann constant, named after its discoverer, Ludwig Boltzmann, is a physical constant that relates the average relative kinetic energy of particles in a gas with the temperature of the gas. It occurs in the definitions of the kelvin and the gas constant, and in Planck's law of black-body radiation and Boltzmann's entropy formula. The Boltzmann constant has the dimension energy divided by temperature, the same as entropy.
Letter case is the distinction between the letters that are in larger upper case and smaller lower case in the written representation of certain languages. The writing systems that distinguish between the upper and lower case have two parallel sets of letters, with each letter in one set usually having an equivalent in the other set. The two case variants are alternative representations of the same letter: they have the same name and pronunciation and are treated identically when sorting in alphabetical order.
For some conditions other than thermodynamic equilbrium, a suitable thermometer calibrated on the thermodynamic scale, including absolute zero, can register a negative temperature; such conditions are hotter than absolute zero.
Temperature is important in all fields of natural science, including physics, chemistry, Earth science, medicine, and biology, as well as most aspects of daily life.
Natural science is a branch of science concerned with the description, prediction, and understanding of natural phenomena, based on empirical evidence from observation and experimentation. Mechanisms such as peer review and repeatability of findings are used to try to ensure the validity of scientific advances.
Physics is the natural science that studies matter, its motion and behavior through space and time, and that studies the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, and its main goal is to understand how the universe behaves.
Chemistry is the scientific discipline involved with elements and compounds composed of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances.
This section needs additional citations for verification . (January 2013) (Learn how and when to remove this template message) |
Many physical processes are affected by temperature, such as
Solid is one of the four fundamental states of matter. In solids, particles are closely packed. It is characterized by structural rigidity and resistance to changes of shape or volume. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire volume available to it like a gas does. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice or irregularly, and are typically low in energy. Solids cannot be compressed with little pressure whereas gases can be compressed with little pressure because in gases molecules are loosely packed.
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter, and is the only state with a definite volume but no fixed shape. A liquid is made up of tiny vibrating particles of matter, such as atoms, held together by intermolecular bonds. Like a gas, a liquid is able to flow and take the shape of a container. Most liquids resist compression, although others can be compressed. Unlike a gas, a liquid does not disperse to fill every space of a container, and maintains a fairly constant density. A distinctive property of the liquid state is surface tension, leading to wetting phenomena. Water is, by far, the most common liquid on Earth.
Gas is one of the four fundamental states of matter. A pure gas may be made up of individual atoms, elemental molecules made from one type of atom, or compound molecules made from a variety of atoms. A gas mixture, such as air, contains a variety of pure gases. What distinguishes a gas from liquids and solids is the vast separation of the individual gas particles. This separation usually makes a colorless gas invisible to the human observer. The interaction of gas particles in the presence of electric and gravitational fields are considered negligible, as indicated by the constant velocity vectors in the image.
This section needs additional citations for verification . (August 2012) (Learn how and when to remove this template message) |
Temperature scales differ in two ways: the point chosen as zero degrees, and the magnitudes of incremental units or degrees on the scale.
The Celsius scale (°C) is used for common temperature measurements in most of the world. It is an empirical scale that was developed by a historical progress, which led to its zero point 0 °C being defined by the freezing point of water, and additional degrees defined so that 100 °C was the boiling point of water, both at sea-level atmospheric pressure. Because of the 100-degree interval, it was called a centigrade scale.^{ [3] } Since the standardization of the kelvin in the International System of Units, it has subsequently been redefined in terms of the equivalent fixing points on the Kelvin scale, and so that a temperature increment of one degree Celsius is the same as an increment of one kelvin, though they differ by an additive offset of approximately 273.15.
The United States commonly uses the Fahrenheit scale, on which water freezes at 32 °F and boils at 212 °F at sea-level atmospheric pressure.
Many scientific measurements use the Kelvin temperature scale (unit symbol: K), named in honor of the physicist who first defined it. It is a thermodynamic or absolute temperature scale. Its zero point, 0 K, is defined to coincide with the coldest conceivable temperature (called absolute zero). Its degrees are defined through particle kinetic theory. In the International System of Units (SI), the magnitude of the kelvin is defined through various empirical measurements of the average kinetic energies of microscopic particles. The magnitude is numerically evaluated in terms of the Boltzmann constant, the numerical value of which is defined as fixed by international convention.^{ [4] }^{ [5] }
The process of cooling involves removing energy from a system. When no more energy can be removed, the system is at absolute zero, though this cannot be achieved experimentally. Absolute zero is the null point of the thermodynamic temperature scale, also called absolute temperature. If it were possible to cool a system to absolute zero, all classical motion of its particles would cease and they would be at complete rest in this classical sense. Microscopically in the description of quantum mechanics, however, matter still has zero-point energy even at absolute zero, because of the uncertainty principle. Such zero-point energy is not considered "heat-driven" or "thermal" motion and does not enter into the deﬁnition of thermodynamic, or absolute, temperature. The temperature of absolute zero occurs at 0 K. That is approximately equal to −273.15 °C (or −459.67 °F).
From 1954 until May 2019, the SI used to define a scale and unit for the kelvin or thermodynamic temperature by using the reliably reproducible temperature of the triple point of water as a second reference point (the first reference point being 0 K at absolute zero). The triple point is a singular state. It is experimentally realized in a dynamic phenomenon of thermodynamic equilibrium; in an adiabatically isolated vessel of fixed volume, a fixed mass of water autonomically and stably forms a self-determining partition into three mutually contacting phases, vapour, liquid, and solid, dynamically depending only on the total internal energy of the mass of water; the partition has its own unique and invariant temperature and pressure. The now current reference for the magnitude of the kelvin uses microscopic phenomena, on their faces evidently characterised in terms of quantum physics. In contrast, the dynamic formation of the triple point of water is a macroscopic phenomenon. In other words, though it is constituted by many microscopic particles, the triple point phenomenon is not, on its face, evidently characterised in terms of quantum physics. Historically, the triple point temperature of water was defined to be exactly at 273.16 units of the measurement increment. Nowadays the triple point temperature is an empirically measured quantity. The freezing point of water at sea-level atmospheric pressure occurs at approximately 273.15 K = 0 °C.
There is a variety of kinds of temperature scale. It may be convenient to classify them as empirically and theoretically based. Empirical temperature scales are historically older, while theoretically based scales arose in the middle of the nineteenth century.^{ [6] }^{ [7] }
Empirically based temperature scales rely directly on measurements of simple physical properties of materials. For example, the length of a column of mercury, confined in a glass-walled capillary tube, is dependent largely on temperature, and is the basis of the very useful mercury-in-glass thermometer. Such scales are valid only within convenient ranges of temperature. For example, above the boiling point of mercury, a mercury-in-glass thermometer is impracticable. Most materials expand with temperature increase, but some materials, such as water, contract with temperature increase over some specific range, and then they are hardly useful as thermometric materials. A material is of no use as a thermometer near one of its phase-change temperatures, for example its boiling-point.
In spite of these restrictions, most generally used practical thermometers are of the empirically based kind. Especially, it was used for calorimetry, which contributed greatly to the discovery of thermodynamics. Nevertheless, empirical thermometry has serious drawbacks when judged as a basis for theoretical physics. Empirically based thermometers, beyond their base as simple direct measurements of ordinary physical properties of thermometric materials, can be re-calibrated, by use of theoretical physical reasoning, and this can extend their range of adequacy.
Theoretically-based temperature scales are based directly on theoretical arguments, especially those of thermodynamics, kinetic theory and quantum mechanics. They rely on theoretical properties of idealized devices and materials. They are more or less comparable with practically feasible physical devices and materials. Theoretically based temperature scales are used to provide calibrating standards for practical empirically based thermometers.
In thermodynamics, the fundamental temperature scale is the Kelvin scale, based on an ideal cyclic process envisaged for a Carnot heat engine, and calibrated through the internationally agreed and prescribed value of the Boltzmann constant.^{ [4] }^{ [5] }
In theory, there is a unique absolute extreme of coldness, in which a body has only zero-point energy; according to the third law of thermodynamics, its temperature, known as absolute zero, is approachable but unattainable through any actual physical process. It is denoted as 0 K on the Kelvin scale. The definition of the Kelvin scale is based on a ratio of quantities of energy in processes in an ideal Carnot engine. The ratios are brought to a numerical scale through the Boltzmann constant. In an ideal gas, and in other theoretically understood bodies, the thermodynamic temperature is proportional to the average kinetic energy of microscopic particles, which can be measured by suitable techniques. The proportionality constant is the Boltzmann constant; its value is defined by international convention; this defines the magnitude of the kelvin, the unit of the thermodynamic temperature scale.
If molecules, or atoms, or electrons,^{ [8] }^{ [9] } are emitted from a material and their velocities are measured, the spectrum of their velocities often nearly obeys a theoretical law called the Maxwell–Boltzmann distribution, which gives a well-founded measurement of temperatures for which the law holds.^{ [10] } There have not yet been successful experiments of this same kind that directly use the Fermi–Dirac distribution for thermometry, but perhaps that will be achieved in future.^{ [11] }
The speed of sound in a gas can be calculated theoretically from the molecular character of the gas, from its temperature and pressure, and from the value of Boltzmann's constant. For a gas of known molecular character and pressure, this provides a relation between temperature and Boltzmann's constant. Those quantities can be known or measured more precisely than can the thermodynamic variables that define the state of a sample of water at its triple point. Consequently, taking the value of Boltzmann's constant as a primarily defined reference of exactly defined value, a measurement of the speed of sound can provide a more precise measurement of the temperature of the gas.^{ [12] }
Measurement of the spectrum of electromagnetic radiation from an ideal three-dimensional black body can provide an accurate temperature measurement because the frequency of maximum spectral radiance of black-body radiation is directly proportional to the temperature of the black body; this is known as Wien's displacement law and has a theoretical explanation in Planck's law and the Bose–Einstein law.
Measurement of the spectrum of noise-power produced by an electrical resistor can also provide an accurate temperature measurement. The resistor has two terminals and is in effect a one-dimensional body. The Bose-Einstein law for this case indicates that the noise-power is directly proportional to the temperature of the resistor and to the value of its resistance and to the noise band-width. In a given frequency band, the noise-power has equal contributions from every frequency and is called Johnson noise. If the value of the resistance is known then the temperature can be found.^{ [13] }^{ [14] }
An ideal material on which a temperature scale might be based is the ideal gas. The pressure exerted by a fixed volume and mass of an ideal gas is directly proportional to its temperature. Some natural gases show so nearly ideal properties over suitable temperature ranges that they can be used for thermometry; this was important during the development of thermodynamics and is still of practical importance today.^{ [15] }^{ [16] } The ideal gas thermometer is, however, not theoretically perfect for thermodynamics. This is because the entropy of an ideal gas at its absolute zero of temperature is not a positive semi-definite quantity, which puts the gas in violation of the third law of thermodynamics. The physical reason is that the ideal gas law, exactly read, refers to the limit of infinitely high temperature and zero pressure.^{ [17] }^{ [18] }^{ [19] } This is one of the reasons why the thermodynamic temperature is defined in terms of an ideal Carnot engine.
The magnitude of the kelvin is now defined in terms of kinetic theory, derived from the value of Boltzmann's constant. A more thorough account of this is below at Theoretical foundation.
Kinetic theory provides a microscopic account of temperature for some bodies of material, especially gases, based on macroscopic systems' being composed of many microscopic particles, such as molecules and ions of various species, the particles of a species being all alike. It explains macroscopic phenomena through the classical mechanics of the microscopic particles. The equipartition theorem of kinetic theory asserts that each classical degree of freedom of a freely moving particle has an average kinetic energy of k_{B}T/2 where k_{B} denotes Boltzmann's constant. The translational motion of the particle has three degrees of freedom, so that, except at very low temperatures where quantum effects predominate, the average translational kinetic energy of a freely moving particle in a system with temperature T will be 3k_{B}T/2.
Molecules, such as oxygen (O_{2}), have more degrees of freedom than single spherical atoms: they undergo rotational and vibrational motions as well as translations. Heating results in an increase in temperature due to an increase in the average translational kinetic energy of the molecules. Heating will also cause, through equipartitioning, the energy associated with vibrational and rotational modes to increase. Thus a diatomic gas will require more energy input to increase its temperature by a certain amount, i.e. it will have a greater heat capacity than a monatomic gas.
As noted above, the speed of sound in a gas can be calculated from the molecular character of the gas, from its temperature and pressure, and from the value of Boltzmann's constant. Taking the value of Boltzmann's constant as a primarily defined reference of exactly defined value, a measurement of the speed of sound can provide a more precise measurement of the temperature of the gas.^{ [12] }
It is possible to measure the average kinetic energy of constituent microscopic particles if they are allowed to escape from the bulk of the system, through a small hole in the containing wall. The spectrum of velocities has to be measured, and the average calculated from that. It is not necessarily the case that the particles that escape and are measured have the same velocity distribution as the particles that remain in the bulk of the system, but sometimes a good sample is possible.
Temperature is one of the principal quantities in the study of thermodynamics. Formerly, the magnitude of the kelvin was defined in thermodynamic terms, but now, as mentioned above, it is defined in terms of kinetic theory.
The Kelvin scale is called absolute for two reasons. One is that its formal character is independent of the properties of particular materials. The other reason is that its zero is in a sense absolute, in that it indicates absence of microscopic classical motion of the constituent particles of matter, so that they have a limiting specific heat of zero for zero temperature, according to the third law of thermodynamics. Nevertheless, a Kelvin temperature does in fact have a definite numerical value that has been arbitrarily chosen by tradition and is dependent on the property of a particular materials; it is simply less arbitrary than relative "degrees" scales such as Celsius and Fahrenheit. Being an absolute scale with one fixed point (zero), there is only one degree of freedom left to arbitrary choice, rather than two as in relative scales. For the Kelvin scale in modern times, this choice of convention is made to be that of setting the gas–liquid–solid triple point of water, a point which can be reliably reproduced as a standard experimental phenomenon, at a numerical value of 273.16 kelvins. The Kelvin scale is also called the thermodynamic scale. However, to demonstrate that its numerical value is indeed arbitrary, it is useful to point out that an alternate, less widely used absolute temperature scale exists called the Rankine scale, made to be aligned with the Fahrenheit scale as Kelvin is with Celsius.
The thermodynamic definition of temperature is due to Kelvin.
It is framed in terms of an idealized device called a Carnot engine, imagined to define a continuous cycle of states of its working body. The cycle is imagined to run so slowly that at each point of the cycle the working body is in a state of thermodynamic equilibrium. There are four limbs in such a Carnot cycle. The engine consists of four bodies. The main one is called the working body. Two of them are called heat reservoirs, so large that their respective non-deformation variables are not changed by transfer of energy as heat through a wall permeable only to heat to the working body. The fourth body is able to exchange energy with the working body only through adiabatic work; it may be called the work reservoir. The substances and states of the two heat reservoirs should be chosen so that they are not in thermal equilibrium with one another. This means that they must be at different fixed temperatures, one, labeled here with the number 1, hotter than the other, labeled here with the number 2. This can be tested by connecting the heat reservoirs successively to an auxiliary empirical thermometric body that starts each time at a convenient fixed intermediate temperature. The thermometric body should be composed of a material that has a strictly monotonic relation between its chosen empirical thermometric variable and the amount of adiabatic isochoric work done on it. In order to settle the structure and sense of operation of the Carnot cycle, it is convenient to use such a material also for the working body; because most materials are of this kind, this is hardly a restriction of the generality of this definition. The Carnot cycle is considered to start from an initial condition of the working body that was reached by the completion of a reversible adiabatic compression. From there, the working body is initially connected by a wall permeable only to heat to the heat reservoir number 1, so that during the first limb of the cycle it expands and does work on the work reservoir. The second limb of the cycle sees the working body expand adiabatically and reversibly, with no energy exchanged as heat, but more energy being transferred as work to the work reservoir. The third limb of the cycle sees the working body connected, through a wall permeable only to heat, to the heat reservoir 2, contracting and accepting energy as work from the work reservoir. The cycle is closed by reversible adiabatic compression of the working body, with no energy transferred as heat, but energy being transferred to it as work from the work reservoir.
With this set-up, the four limbs of the reversible Carnot cycle are characterized by amounts of energy transferred, as work from the working body to the work reservoir, and as heat from the heat reservoirs to the working body. The amounts of energy transferred as heat from the heat reservoirs are measured through the changes in the non-deformation variable of the working body, with reference to the previously known properties of that body, the amounts of work done on the work reservoir, and the first law of thermodynamics. The amounts of energy transferred as heat respectively from reservoir 1 and from reservoir 2 may then be denoted respectively Q_{1} and Q_{2}. Then the absolute or thermodynamic temperatures, T_{1} and T_{2}, of the reservoirs are defined so that to be such that
| (1) |
Kelvin's original work postulating absolute temperature was published in 1848. It was based on the work of Carnot, before the formulation of the first law of thermodynamics. Kelvin wrote in his 1848 paper that his scale was absolute in the sense that it was defined "independently of the properties of any particular kind of matter". His definitive publication, which sets out the definition just stated, was printed in 1853, a paper read in 1851.^{ [20] }^{ [21] }^{ [22] }^{ [23] }
This definition rests on the physical assumption that there are readily available walls permeable only to heat. In his detailed definition of a wall permeable only to heat, Carathéodory includes several ideas. The non-deformation state variable of a closed system is represented as a real number. A state of thermal equilibrium between two closed systems connected by a wall permeable only to heat means that a certain mathematical relation holds between the state variables, including the respective non-deformation variables, of those two systems (that particular mathematical relation is regarded by Buchdahl as a preferred statement of the zeroth law of thermodynamics).^{ [24] } Also, referring to thermal contact equilibrium, "whenever each of the systems S_{1} and S_{2} is made to reach equilibrium with a third system S_{3} under identical conditions, the systems S_{1} and S_{2} are in mutual equilibrium."^{ [25] } It may be viewed as a re-statement of the principle stated by Maxwell in the words: "All heat is of the same kind."^{ [26] } This physical idea is also expressed by Bailyn as a possible version of the zeroth law of thermodynamics: "All diathermal walls are equivalent."^{ [27] } Thus the present definition of thermodynamic temperature rests on the zeroth law of thermodynamics. Explicitly, this present definition of thermodynamic temperature also rests on the first law of thermodynamics, for the determination of amounts of energy transferred as heat.
Implicitly for this definition, the second law of thermodynamics provides information that establishes the virtuous character of the temperature so defined. It provides that any working substance that complies with the requirement stated in this definition will lead to the same ratio of thermodynamic temperatures, which in this sense is universal, or absolute. The second law of thermodynamics also provides that the thermodynamic temperature defined in this way is positive, because this definition requires that the heat reservoirs not be in thermal equilibrium with one another, and the cycle can be imagined to operate only in one sense if net work is to be supplied to the work reservoir.
Numerical details are settled by making one of the heat reservoirs a cell at the triple point of water, which is defined to have an absolute temperature of 273.16 K.^{ [28] } The zeroth law of thermodynamics allows this definition to be used to measure the absolute or thermodynamic temperature of an arbitrary body of interest, by making the other heat reservoir have the same temperature as the body of interest.
In thermodynamic terms, temperature is an intensive variable because it is equal to a differential coefficient of one extensive variable with respect to another, for a given body. It thus has the dimensions of a ratio of two extensive variables. In thermodynamics, two bodies are often considered as connected by contact with a common wall, which has some specific permeability properties. Such specific permeability can be referred to a specific intensive variable. An example is a diathermic wall that is permeable only to heat; the intensive variable for this case is temperature. When the two bodies have been in contact for a very long time, and have settled to a permanent steady state, the relevant intensive variables are equal in the two bodies; for a diathermal wall, this statement is sometimes called the zeroth law of thermodynamics.^{ [29] }^{ [30] }^{ [31] }
In particular, when the body is described by stating its internal energy U, an extensive variable, as a function of its entropy S, also an extensive variable, and other state variables V, N, with U = U (S, V, N), then the temperature is equal to the partial derivative of the internal energy with respect to the entropy:^{ [30] }^{ [31] }^{ [32] }
| (2) |
Likewise, when the body is described by stating its entropy S as a function of its internal energy U, and other state variables V, N, with S = S (U, V, N), then the reciprocal of the temperature is equal to the partial derivative of the entropy with respect to the internal energy:^{ [30] }^{ [32] }^{ [33] }
| (3) |
The above definition, equation (1), of the absolute temperature is due to Kelvin. It refers to systems closed to transfer of matter, and has special emphasis on directly experimental procedures. A presentation of thermodynamics by Gibbs starts at a more abstract level and deals with systems open to the transfer of matter; in this development of thermodynamics, the equations (2) and (3) above are actually alternative definitions of temperature.^{ [34] }
Real world bodies are often not in thermodynamic equilibrium and not homogeneous. For study by methods of classical irreversible thermodynamics, a body is usually spatially and temporally divided conceptually into 'cells' of small size. If classical thermodynamic equilibrium conditions for matter are fulfilled to good approximation in such a 'cell', then it is homogeneous and a temperature exists for it. If this is so for every 'cell' of the body, then local thermodynamic equilibrium is said to prevail throughout the body.^{ [35] }^{ [36] }^{ [37] }^{ [38] }^{ [39] }
It makes good sense, for example, to say of the extensive variable U, or of the extensive variable S, that it has a density per unit volume, or a quantity per unit mass of the system, but it makes no sense to speak of density of temperature per unit volume or quantity of temperature per unit mass of the system. On the other hand, it makes no sense to speak of the internal energy at a point, while when local thermodynamic equilibrium prevails, it makes good sense to speak of the temperature at a point. Consequently, temperature can vary from point to point in a medium that is not in global thermodynamic equilibrium, but in which there is local thermodynamic equilibrium.
Thus, when local thermodynamic equilibrium prevails in a body, temperature can be regarded as a spatially varying local property in that body, and this is because temperature is an intensive variable.
Conjugate variables of thermodynamics | |
---|---|
Pressure | Volume |
(Stress) | (Strain) |
Temperature | Entropy |
Chemical potential | Particle number |
Temperature is a measure of a quality of a state of a material.^{ [40] } The quality may be regarded as a more abstract entity than any particular temperature scale that measures it, and is called hotness by some writers.^{ [41] } The quality of hotness refers to the state of material only in a particular locality, and in general, apart from bodies held in a steady state of thermodynamic equilibrium, hotness varies from place to place. It is not necessarily the case that a material in a particular place is in a state that is steady and nearly homogeneous enough to allow it to have a well-defined hotness or temperature. Hotness may be represented abstractly as a one-dimensional manifold. Every valid temperature scale has its own one-to-one map into the hotness manifold.^{ [42] }^{ [43] }
When two systems in thermal contact are at the same temperature no heat transfers between them. When a temperature difference does exist heat flows spontaneously from the warmer system to the colder system until they are in thermal equilibrium. Such heat transfer occurs by conduction or by thermal radiation.^{ [44] }^{ [45] }^{ [46] }^{ [47] }^{ [48] }^{ [49] }^{ [50] }^{ [51] }
Experimental physicists, for example Galileo and Newton,^{ [52] } found that there are indefinitely many empirical temperature scales. Nevertheless, the zeroth law of thermodynamics says that they all measure the same quality. This means that for a body in its own state of internal thermodynamic equilibrium, every correctly calibrated thermometer, of whatever kind, that measures the temperature of the body, records one and the same temperature. For a body that is not in its own state of internal thermodynamic equilibrium, different thermometers can record different temperatures, depending respectively on the mechanisms of operation of the thermometers.
For experimental physics, hotness means that, when comparing any two given bodies in their respective separate thermodynamic equilibria, any two suitably given empirical thermometers with numerical scale readings will agree as to which is the hotter of the two given bodies, or that they have the same temperature.^{ [53] } This does not require the two thermometers to have a linear relation between their numerical scale readings, but it does require that the relation between their numerical readings shall be strictly monotonic.^{ [54] }^{ [55] } A definite sense of greater hotness can be had, independently of calorimetry, of thermodynamics, and of properties of particular materials, from Wien's displacement law of thermal radiation: the temperature of a bath of thermal radiation is proportional, by a universal constant, to the frequency of the maximum of its frequency spectrum; this frequency is always positive, but can have values that tend to zero. Thermal radiation is initially defined for a cavity in thermodynamic equilibrium. These physical facts justify a mathematical statement that hotness exists on an ordered one-dimensional manifold. This is a fundamental character of temperature and thermometers for bodies in their own thermodynamic equilibrium.^{ [6] }^{ [42] }^{ [43] }^{ [56] }^{ [57] }
Except for a system undergoing a first-order phase change such as the melting of ice, as a closed system receives heat, without change in its volume and without change in external force fields acting on it, its temperature rises. For a system undergoing such a phase change so slowly that departure from thermodynamic equilibrium can be neglected, its temperature remains constant as the system is supplied with latent heat. Conversely, a loss of heat from a closed system, without phase change, without change of volume, and without change in external force fields acting on it, decreases its temperature.^{ [58] }
While for bodies in their own thermodynamic equilibrium states, the notion of temperature requires that all empirical thermometers must agree as to which of two bodies is the hotter or that they are at the same temperature, this requirement is not safe for bodies that are in steady states though not in thermodynamic equilibrium. It can then well be that different empirical thermometers disagree about which is the hotter, and if this is so, then at least one of the bodies does not have a well defined absolute thermodynamic temperature. Nevertheless, any one given body and any one suitable empirical thermometer can still support notions of empirical, non-absolute, hotness and temperature, for a suitable range of processes. This is a matter for study in non-equilibrium thermodynamics.
When a body is not in a steady state, then the notion of temperature becomes even less safe than for a body in a steady state not in thermodynamic equilibrium. This is also a matter for study in non-equilibrium thermodynamics.
For axiomatic treatment of thermodynamic equilibrium, since the 1930s, it has become customary to refer to a zeroth law of thermodynamics. The customarily stated minimalist version of such a law postulates only that all bodies, which when thermally connected would be in thermal equilibrium, should be said to have the same temperature by definition, but by itself does not establish temperature as a quantity expressed as a real number on a scale. A more physically informative version of such a law views empirical temperature as a chart on a hotness manifold.^{ [42] }^{ [57] }^{ [59] } While the zeroth law permits the definitions of many different empirical scales of temperature, the second law of thermodynamics selects the definition of a single preferred, absolute temperature, unique up to an arbitrary scale factor, whence called the thermodynamic temperature.^{ [6] }^{ [42] }^{ [60] }^{ [61] }^{ [62] }^{ [63] } If internal energy is considered as a function of the volume and entropy of a homogeneous system in thermodynamic equilibrium, thermodynamic absolute temperature appears as the partial derivative of internal energy with respect the entropy at constant volume. Its natural, intrinsic origin or null point is absolute zero at which the entropy of any system is at a minimum. Although this is the lowest absolute temperature described by the model, the third law of thermodynamics postulates that absolute zero cannot be attained by any physical system.
When an energy transfer to or from a body is only as heat, the state of the body changes. Depending on the surroundings and the walls separating them from the body, various changes are possible in the body. They include chemical reactions, increase of pressure, increase of temperature, and phase change. For each kind of change under specified conditions, the heat capacity is the ratio of the quantity of heat transferred to the magnitude of the change. For example, if the change is an increase in temperature at constant volume, with no phase change and no chemical change, then the temperature of the body rises and its pressure increases. The quantity of heat transferred, ΔQ, divided by the observed temperature change, ΔT, is the body's heat capacity at constant volume:
If heat capacity is measured for a well defined amount of substance, the specific heat is the measure of the heat required to increase the temperature of such a unit quantity by one unit of temperature. For example, to raise the temperature of water by one kelvin (equal to one degree Celsius) requires 4186 joules per kilogram (J/kg).
Temperature measurement using modern scientific thermometers and temperature scales goes back at least as far as the early 18th century, when Gabriel Fahrenheit adapted a thermometer (switching to mercury) and a scale both developed by Ole Christensen Rømer. Fahrenheit's scale is still in use in the United States for non-scientific applications.
Temperature is measured with thermometers that may be calibrated to a variety of temperature scales. In most of the world (except for Belize, Myanmar, Liberia and the United States), the Celsius scale is used for most temperature measuring purposes. Most scientists measure temperature using the Celsius scale and thermodynamic temperature using the Kelvin scale, which is the Celsius scale offset so that its null point is 0 K = −273.15 °C, or absolute zero. Many engineering fields in the US, notably high-tech and US federal specifications (civil and military), also use the Kelvin and Celsius scales. Other engineering fields in the US also rely upon the Rankine scale (a shifted Fahrenheit scale) when working in thermodynamic-related disciplines such as combustion.
The basic unit of temperature in the International System of Units (SI) is the Kelvin. It has the symbol K.
For everyday applications, it is often convenient to use the Celsius scale, in which 0 °C corresponds very closely to the freezing point of water and 100 °C is its boiling point at sea level. Because liquid droplets commonly exist in clouds at sub-zero temperatures, 0 °C is better defined as the melting point of ice. In this scale a temperature difference of 1 degree Celsius is the same as a 1kelvin increment, but the scale is offset by the temperature at which ice melts (273.15 K).
By international agreement^{ [64] } the Kelvin and Celsius scales were defined by two fixing points: absolute zero and the triple point of Vienna Standard Mean Ocean Water, which is water specially prepared with a specified blend of hydrogen and oxygen isotopes. Absolute zero is defined as precisely 0 K and −273.15 °C. It is the temperature at which all classical translational motion of the particles comprising matter ceases and they are at complete rest in the classical model. Quantum-mechanically, however, zero-point motion remains and has an associated energy, the zero-point energy. Matter is in its ground state,^{ [65] } and contains no thermal energy. The triple point of water is defined as 273.16 K and 0.01 °C. This definition served the following purposes: it fixes the magnitude of the kelvin as being precisely 1 part in 273.16 parts of the difference between absolute zero and the triple point of water; it establishes that one kelvin has precisely the same magnitude as one degree on the Celsius scale; and it establishes the difference between the null points of these scales as being 273.15 K (0 K = −273.15 °C and 273.16 K = 0.01 °C). Since 2019, there has been a new definition based on the Boltzmann constant.^{ [66] } But the scales are virtually unchanged.
In the United States, the Fahrenheit scale is widely used. On this scale the freezing point of water corresponds to 32 °F and the boiling point to 212 °F. The Rankine scale, still used in fields of chemical engineering in the US, is an absolute scale based on the Fahrenheit increment.
The following table shows the temperature conversion formulas for conversions to and from the Celsius scale.
from Celsius | to Celsius | |
---|---|---|
Fahrenheit | [°F] = [°C] × ^{9}⁄_{5} + 32 | [°C] = ([°F] − 32) × ^{5}⁄_{9} |
Kelvin | [K] = [°C] + 273.15 | [°C] = [K] − 273.15 |
Rankine | [°R] = ([°C] + 273.15) × ^{9}⁄_{5} | [°C] = ([°R] − 491.67) × ^{5}⁄_{9} |
Delisle | [°De] = (100 − [°C]) × ^{3}⁄_{2} | [°C] = 100 − [°De] × ^{2}⁄_{3} |
Newton | [°N] = [°C] × ^{33}⁄_{100} | [°C] = [°N] × ^{100}⁄_{33} |
Réaumur | [°Ré] = [°C] × ^{4}⁄_{5} | [°C] = [°Ré] × ^{5}⁄_{4} |
Rømer | [°Rø] = [°C] × ^{21}⁄_{40} + 7.5 | [°C] = ([°Rø] − 7.5) × ^{40}⁄_{21} |
The field of plasma physics deals with phenomena of electromagnetic nature that involve very high temperatures. It is customary to express temperature as energy in units of electronvolts (eV) or kiloelectronvolts (keV). The energy, which has a different dimension from temperature, is then calculated as the product of the Boltzmann constant and temperature, . Then, 1 eV corresponds to 11605 K. In the study of QCD matter one routinely encounters temperatures of the order of a few hundred MeV, equivalent to about 10^{12} K.
Historically, there are several scientific approaches to the explanation of temperature: the classical thermodynamic description based on macroscopic empirical variables that can be measured in a laboratory; the kinetic theory of gases which relates the macroscopic description to the probability distribution of the energy of motion of gas particles; and a microscopic explanation based on statistical physics and quantum mechanics. In addition, rigorous and purely mathematical treatments have provided an axiomatic approach to classical thermodynamics and temperature.^{ [67] } Statistical physics provides a deeper understanding by describing the atomic behavior of matter, and derives macroscopic properties from statistical averages of microscopic states, including both classical and quantum states. In the fundamental physical description, using natural units, temperature may be measured directly in units of energy. However, in the practical systems of measurement for science, technology, and commerce, such as the modern metric system of units, the macroscopic and the microscopic descriptions are interrelated by the Boltzmann constant, a proportionality factor that scales temperature to the microscopic mean kinetic energy.
The microscopic description in statistical mechanics is based on a model that analyzes a system into its fundamental particles of matter or into a set of classical or quantum-mechanical oscillators and considers the system as a statistical ensemble of microstates. As a collection of classical material particles, temperature is a measure of the mean energy of motion, called kinetic energy, of the particles, whether in solids, liquids, gases, or plasmas. The kinetic energy, a concept of classical mechanics, is half the mass of a particle times its speed squared. In this mechanical interpretation of thermal motion, the kinetic energies of material particles may reside in the velocity of the particles of their translational or vibrational motion or in the inertia of their rotational modes. In monatomic perfect gases and, approximately, in most gases, temperature is a measure of the mean particle kinetic energy. It also determines the probability distribution function of the energy. In condensed matter, and particularly in solids, this purely mechanical description is often less useful and the oscillator model provides a better description to account for quantum mechanical phenomena. Temperature determines the statistical occupation of the microstates of the ensemble. The microscopic definition of temperature is only meaningful in the thermodynamic limit, meaning for large ensembles of states or particles, to fulfill the requirements of the statistical model.
The kinetic energy is also considered as a component of thermal energy. The thermal energy may be partitioned into independent components attributed to the degrees of freedom of the particles or to the modes of oscillators in a thermodynamic system. In general, the number of these degrees of freedom that are available for the equipartitioning of energy depends on the temperature, i.e. the energy region of the interactions under consideration. For solids, the thermal energy is associated primarily with the vibrations of its atoms or molecules about their equilibrium position. In an ideal monatomic gas, the kinetic energy is found exclusively in the purely translational motions of the particles. In other systems, vibrational and rotational motions also contribute degrees of freedom.
Maxwell and Boltzmann developed a kinetic theory that yields a fundamental understanding of temperature in gases.^{ [68] } This theory also explains the ideal gas law and the observed heat capacity of monatomic (or 'noble') gases.^{ [69] }^{ [70] }^{ [71] }
The ideal gas law is based on observed empirical relationships between pressure (p), volume (V), and temperature (T), and was recognized long before the kinetic theory of gases was developed (see Boyle's and Charles's laws). The ideal gas law states:^{ [72] }
where n is the number of moles of gas and R = 8.314462618... J⋅mol^{−1}⋅K^{−1}^{ [73] } is the gas constant.
This relationship gives us our first hint that there is an absolute zero on the temperature scale, because it only holds if the temperature is measured on an absolute scale such as Kelvin's. The ideal gas law allows one to measure temperature on this absolute scale using the gas thermometer. The temperature in kelvins can be defined as the pressure in pascals of one mole of gas in a container of one cubic meter, divided by the gas constant.
Although it is not a particularly convenient device, the gas thermometer provides an essential theoretical basis by which all thermometers can be calibrated. As a practical matter, it is not possible to use a gas thermometer to measure absolute zero temperature since the gases tend to condense into a liquid long before the temperature reaches zero. It is possible, however, to extrapolate to absolute zero by using the ideal gas law, as shown in the figure.
The kinetic theory assumes that pressure is caused by the force associated with individual atoms striking the walls, and that all energy is translational kinetic energy. Using a sophisticated symmetry argument,^{ [74] } Boltzmann deduced what is now called the Maxwell–Boltzmann probability distribution function for the velocity of particles in an ideal gas. From that probability distribution function, the average kinetic energy (per particle) of a monatomic ideal gas is^{ [70] }^{ [75] }
where the Boltzmann constant k is the ideal gas constant divided by the Avogadro number, and is the root-mean-square speed. Thus the ideal gas law states that internal energy is directly proportional to temperature.^{ [76] } This direct proportionality between temperature and internal energy is a special case of the equipartition theorem, and holds only in the classical limit of an ideal gas. It does not hold for most substances, although it is true that temperature is a monotonic (non-decreasing) function of internal energy.
When two otherwise isolated bodies are connected together by a rigid physical path impermeable to matter, there is spontaneous transfer of energy as heat from the hotter to the colder of them. Eventually, they reach a state of mutual thermal equilibrium, in which heat transfer has ceased, and the bodies' respective state variables have settled to become unchanging.
One statement of the zeroth law of thermodynamics is that if two systems are each in thermal equilibrium with a third system, then they are also in thermal equilibrium with each other.
This statement helps to define temperature but it does not, by itself, complete the definition. An empirical temperature is a numerical scale for the hotness of a thermodynamic system. Such hotness may be defined as existing on a one-dimensional manifold, stretching between hot and cold. Sometimes the zeroth law is stated to include the existence of a unique universal hotness manifold, and of numerical scales on it, so as to provide a complete definition of empirical temperature.^{ [59] } To be suitable for empirical thermometry, a material must have a monotonic relation between hotness and some easily measured state variable, such as pressure or volume, when all other relevant coordinates are fixed. An exceptionally suitable system is the ideal gas, which can provide a temperature scale that matches the absolute Kelvin scale. The Kelvin scale is defined on the basis of the second law of thermodynamics.
In the previous section certain properties of temperature were expressed by the zeroth law of thermodynamics. It is also possible to define temperature in terms of the second law of thermodynamics which deals with entropy. The second law states that any process will result in either no change or a net increase in the entropy of the universe. This can be understood in terms of probability.
For example, in a series of coin tosses, a perfectly ordered system would be one in which either every toss comes up heads or every toss comes up tails. This means that for a perfectly ordered set of coin tosses, there is only one set of toss outcomes possible: the set in which 100% of tosses come up the same. On the other hand, there are multiple combinations that can result in disordered or mixed systems, where some fraction are heads and the rest tails. A disordered system can be 90% heads and 10% tails, or it could be 98% heads and 2% tails, etcetera. As the number of coin tosses increases, the number of possible combinations corresponding to imperfectly ordered systems increases. For a very large number of coin tosses, the combinations to ~50% heads and ~50% tails dominate and obtaining an outcome significantly different from 50/50 becomes extremely unlikely. Thus the system naturally progresses to a state of maximum disorder or entropy.
It has been previously stated that temperature governs the transfer of heat between two systems and it was just shown that the universe tends to progress so as to maximize entropy, which is expected of any natural system. Thus, it is expected that there is some relationship between temperature and entropy. To find this relationship, the relationship between heat, work and temperature is first considered. A heat engine is a device for converting thermal energy into mechanical energy, resulting in the performance of work, and analysis of the Carnot heat engine provides the necessary relationships. The work from a heat engine corresponds to the difference between the heat put into the system at the high temperature, q_{H} and the heat ejected at the low temperature, q_{C}. The efficiency is the work divided by the heat put into the system:
| (4) |
where w_{cy} is the work done per cycle. The efficiency depends only on q_{C}/q_{H}. Because q_{C} and q_{H} correspond to heat transfer at the temperatures T_{C} and T_{H} respectively, q_{C}/q_{H} should be some function of these temperatures:
| (5) |
Carnot's theorem states that all reversible engines operating between the same heat reservoirs are equally efficient. Thus, a heat engine operating between T_{1} and T_{3} must have the same efficiency as one consisting of two cycles, one between T_{1} and T_{2}, and the second between T_{2} and T_{3}. This can only be the case if
which implies
Since the first function is independent of T_{2}, this temperature must cancel on the right side, meaning f(T_{1},T_{3}) is of the form g(T_{1})/g(T_{3}) (i.e. f(T_{1},T_{3}) = f(T_{1},T_{2})f(T_{2},T_{3}) = g(T_{1})/g(T_{2})· g(T_{2})/g(T_{3}) = g(T_{1})/g(T_{3})), where g is a function of a single temperature. A temperature scale can now be chosen with the property that
| (6) |
Substituting (6) back into (4) gives a relationship for the efficiency in terms of temperature:
| (7) |
For T_{C} = 0 K the efficiency is 100% and that efficiency becomes greater than 100% below 0 K. Since an efficiency greater than 100% violates the first law of thermodynamics, this implies that 0 K is the minimum possible temperature. In fact the lowest temperature ever obtained in a macroscopic system was 20 nK, which was achieved in 1995 at NIST. Subtracting the right hand side of (5) from the middle portion and rearranging gives
where the negative sign indicates heat ejected from the system. This relationship suggests the existence of a state function, S, defined by
| (8) |
where the subscript indicates a reversible process. The change of this state function around any cycle is zero, as is necessary for any state function. This function corresponds to the entropy of the system, which was described previously. Rearranging (8) gives a formula for temperature in terms of fictive infinitesimal quasi-reversible elements of entropy and heat:
| (9) |
For a system, where entropy S(E) is a function of its energy E, the temperature T is given by
| (10) |
i.e. the reciprocal of the temperature is the rate of increase of entropy with respect to energy.
Statistical mechanics defines temperature based on a system's fundamental degrees of freedom. Eq.(10) is the defining relation of temperature. Eq. (9) can be derived from the principles underlying the fundamental thermodynamic relation.
It is possible to extend the definition of temperature even to systems of few particles, like in a quantum dot. The generalized temperature is obtained by considering time ensembles instead of configuration-space ensembles given in statistical mechanics in the case of thermal and particle exchange between a small system of fermions (N even less than 10) with a single/double-occupancy system. The finite quantum grand canonical ensemble,^{ [77] } obtained under the hypothesis of ergodicity and orthodicity,^{ [78] } allows expressing the generalized temperature from the ratio of the average time of occupation and of the single/double-occupancy system:^{ [79] }
where E_{F} is the Fermi energy. This generalized temperature tends to the ordinary temperature when N goes to infinity.
On the empirical temperature scales that are not referenced to absolute zero, a negative temperature is one below the zero-point of the scale used. For example, dry ice has a sublimation temperature of −78.5 °C which is equivalent to −109.3 °F. On the absolute kelvin scale this temperature is 194.6 K. No body can be brought to exactly 0 K (the coldest possible temperature) by any finite practicable process; this is a consequence of the third law of thermodynamics.
However, when there is an upper limit of energy a system can attain, it is possible to obtain a negative temperature on the absolute scale. Such negative temperatures are in fact hotter than any positive temperature and can be achieved by heating the system past a point of infinite temperature. As the energy in such systems increases, the entropy increases for some range, but eventually attains a maximum value at a critical temperature and then begins to decrease as the highest energy states begin to fill. At the point of maximum entropy, the temperature function shows the behavior of a singularity, because the slope of the entropy function decreases to zero and then turns negative. Since temperature is the inverse of the derivative of the entropy, the temperature goes to positive infinity at this point, switching to negative infinity as the slope turns negative.^{ [80] } When brought into contact with a system at a positive temperature, energy will be transferred as heat from the negative temperature system to the positive temperature system.
Temperature | Peak emittance wavelength ^{ [81] } of black-body radiation | ||
---|---|---|---|
Kelvin | Celsius | ||
Absolute zero (precisely by definition) | 0 K | −273.15 °C | cannot be defined |
Coldest temperature achieved^{ [82] } | 100 pK | −273.149999999900 °C | 29000 km |
Coldest Bose–Einstein condensate ^{ [83] } | 450 pK | −273.14999999955 °C | 6400 km |
One millikelvin (precisely by definition) | 0.001 K | −273.149 °C | 2.89777 m (radio, FM band)^{ [84] } |
Cosmic microwave background (2013 measurement) | 2.7260 K | −270.424 °C | 0.00106301 m (millimeter-wavelength microwave) |
Water triple point (precisely by definition) | 273.16 K | 0.01 °C | 10608.3 nm (long-wavelength IR) |
Water boiling point ^{ [A] } | 373.1339 K | 99.9839 °C | 7766.03 nm (mid-wavelength IR) |
Iron melting point | 1811 K | 1538 °C | 1600 nm (far infrared) |
Incandescent lamp ^{ [B] } | 2500 K | ≈2200 °C | 1160 nm (near infrared)^{ [C] } |
Sun's visible surface^{ [D] }^{ [85] } | 5778 K | 5505 °C | 501.5 nm (green-blue light) |
Lightning bolt channel^{ [E] } | 28 kK | 28000 °C | 100 nm (far ultraviolet light) |
Sun's core ^{ [E] } | 16 MK | 16 million °C | 0.18 nm (X-rays) |
Thermonuclear weapon (peak temperature)^{ [E] }^{ [86] } | 350 MK | 350 million °C | 8.3×10^{−3} nm (gamma rays) |
Sandia National Labs' Z machine ^{ [E] }^{ [87] } | 2 GK | 2 billion °C | 1.4×10^{−3} nm (gamma rays)^{ [F] } |
Core of a high-mass star on its last day ^{ [E] }^{ [88] } | 3 GK | 3 billion °C | 1×10^{−3} nm (gamma rays) |
Merging binary neutron star system^{ [E] }^{ [89] } | 350 GK | 350 billion °C | 8×10^{−6} nm (gamma rays) |
Relativistic Heavy Ion Collider ^{ [E] }^{ [90] } | 1 TK | 1 trillion °C | 3×10^{−6} nm (gamma rays) |
CERN's proton vs nucleus collisions^{ [E] }^{ [91] } | 10 TK | 10 trillion °C | 3×10^{−7} nm (gamma rays) |
Universe 5.391×10^{−44} s after the Big Bang ^{ [E] } | 1.417×10^{32} K (Planck temperature) | 1.417×10^{32} °C | 1.616×10^{−27} nm (Planck length)^{ [92] } |
Consequently we identify temperature as a driving force which causes something called heat to be transferred.
Wikimedia Commons has media related to Temperature . |
Look up temperature in Wiktionary, the free dictionary. |
Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as 0°. The fundamental particles of nature have minimum vibrational motion, retaining only quantum mechanical, zero-point energy-induced particle motion. The theoretical temperature is determined by extrapolating the ideal gas law; by international agreement, absolute zero is taken as −273.15° on the Celsius scale, which equals −459.67° on the Fahrenheit scale. The corresponding Kelvin and Rankine temperature scales set their zero points at absolute zero by definition.
In statistical mechanics, entropy is an extensive property of a thermodynamic system. It is closely related to the number Ω of microscopic configurations that are consistent with the macroscopic quantities that characterize the system. Entropy expresses the number Ω of different configurations that a system defined by macroscopic variables could assume. Under the assumption that each microstate is equally probable, the entropy is the natural logarithm of the number of microstates, multiplied by the Boltzmann constant k_{B}. Formally,
Thermodynamics is the branch of physics that deals with heat and temperature, and their relation to energy, work, radiation, and properties of matter. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, chemical engineering and mechanical engineering, but also in fields as complex as meteorology.
Thermodynamic temperature is the absolute measure of temperature and is one of the principal parameters of thermodynamics.
A timeline of events related to thermodynamics.
An ideal gas is a theoretical gas composed of many randomly moving point particles whose only interactions are perfectly elastic collisions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics.
The second law of thermodynamics states that the total entropy of an isolated system can never decrease over time. The total entropy of a system and its surroundings can remain constant in ideal cases where the system is in thermodynamic equilibrium, or is undergoing a (fictive) reversible process. In all processes that occur, including spontaneous processes, the total entropy of the system and its surroundings increases and the process is irreversible in the thermodynamic sense. The increase in entropy accounts for the irreversibility of natural processes, and the asymmetry between future and past.
The zeroth law of thermodynamics states that if two thermodynamic systems are each in thermal equilibrium with a third one, then they are in thermal equilibrium with each other. Accordingly, thermal equilibrium between systems is a transitive relation.
Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in thermal equilibrium with itself if the temperature within the system is spatially uniform and temporally constant.
Thermal energy refers to several distinct thermodynamic quantities, such as the internal energy of a system; heat or sensible heat, which are defined as types of energy transfer ; or for the characteristic energy of a degree of freedom in a thermal system , where is temperature and is the Boltzmann constant.
The three laws of thermodynamics define physical quantities that characterize thermodynamic systems at thermal equilibrium. The laws describe how these quantities behave under various circumstances, and preclude the possibility of certain phenomena.
The history of thermodynamics is a fundamental strand in the history of physics, the history of chemistry, and the history of science in general. Owing to the relevance of thermodynamics in much of science and technology, its history is finely woven with the developments of classical mechanics, quantum mechanics, magnetism, and chemical kinetics, to more distant applied fields such as meteorology, information theory, and biology (physiology), and to technological developments such as the steam engine, internal combustion engine, cryogenics and electricity generation. The development of thermodynamics both drove and was driven by atomic theory. It also, albeit in a subtle manner, motivated new directions in probability and statistics; see, for example, the timeline of thermodynamics.
In classical statistical mechanics, the entropy function earlier introduced by Rudolf Clausius is interpreted as statistical entropy using probability theory. The statistical entropy perspective was introduced in 1870 with the work of physicist Ludwig Boltzmann.
Entropy is an important concept in the branch of physics known as thermodynamics. The idea of "irreversibility" is central to the understanding of entropy. Everyone has an intuitive understanding of irreversibility. If one watches a movie of everyday life running forward and in reverse, it is easy to distinguish between the two. The movie running in reverse shows impossible things happening – water jumping out of a glass into a pitcher above it, smoke going down a chimney, water in a glass freezing to form ice cubes, crashed cars reassembling themselves, and so on. The intuitive meaning of expressions such as "you can't unscramble an egg", or "you can't take the cream out of the coffee" is that these are irreversible processes. No matter how long you wait, the cream won't jump out of the coffee into the creamer.
In thermodynamics, entropy is commonly associated with the amount of order, disorder, or chaos in a thermodynamic system. This stems from Rudolf Clausius' 1862 assertion that any thermodynamic process always "admits to being reduced [reduction] to the alteration in some way or another of the arrangement of the constituent parts of the working body" and that internal work associated with these alterations is quantified energetically by a measure of "entropy" change, according to the following differential expression:
Scale of temperature is a way to measure temperature quantitatively. Empirical scales measure the quantity of heat in a system in relation to a fixed parameter, a thermometer. They are not absolute measures, that is why scales vary. Absolute temperature is thermodynamic temperature because it is directly related to thermodynamics. It is the Zeroth Law of Thermodynamics that leads to a formal definition of thermodynamic temperature.