Thermodynamics |
---|
Physical or chemical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size (or extent) of the system changes. The terms "intensive and extensive quantities" were introduced into physics by German mathematician Georg Helm in 1898, and by American physicist and chemist Richard C. Tolman in 1917. [1] [2]
According to International Union of Pure and Applied Chemistry (IUPAC), an intensive property or intensive quantity is one whose magnitude is independent of the size of the system. [3] An intensive property is not necessarily homogeneously distributed in space; it can vary from place to place in a body of matter and radiation. Examples of intensive properties include temperature, T; refractive index, n; density, ρ; and hardness, η.
By contrast, an extensive property or extensive quantity is one whose magnitude is additive for subsystems. [4] Examples include mass, volume and entropy. [5]
Not all properties of matter fall into these two categories. For example, the square root of the volume is neither intensive nor extensive. [1] If a system is doubled in size by juxtaposing a second identical system, the value of an intensive property equals the value for each subsystem and the value of an extensive property is twice the value for each subsystem. However the property √V is instead multiplied by √2 .
An intensive property is a physical quantity whose value does not depend on the amount of substance which was measured. The most obvious intensive quantities are ratios of extensive quantities. In a homogeneous system divided into two halves, all its extensive properties, in particular its volume and its mass, are divided into two halves. All its intensive properties, such as the mass per volume (mass density) or volume per mass (specific volume), must remain the same in each half.
The temperature of a system in thermal equilibrium is the same as the temperature of any part of it, so temperature is an intensive quantity. If the system is divided by a wall that is permeable to heat or to matter, the temperature of each subsystem is identical. Additionally, the boiling temperature of a substance is an intensive property. For example, the boiling temperature of water is 100 °C at a pressure of one atmosphere, regardless of the quantity of water remaining as liquid.
Any extensive quantity "E" for a sample can be divided by the sample's volume, to become the "E density" for the sample; similarly, any extensive quantity "E" can be divided by the sample's mass, to become the sample's "specific E"; extensive quantities "E" which have been divided by the number of moles in their sample are referred to as "molar E".
The distinction between intensive and extensive properties has some theoretical uses. For example, in thermodynamics, the state of a simple compressible system is completely specified by two independent, intensive properties, along with one extensive property, such as mass. Other intensive properties are derived from those two intensive variables.
Examples of intensive properties include: [5] [2] [1]
See List of materials properties for a more exhaustive list specifically pertaining to materials.
An extensive property is a physical quantity whose value is proportional to the size of the system it describes, [8] or to the quantity of matter in the system. For example, the mass of a sample is an extensive quantity; it depends on the amount of substance. The related intensive quantity is the density which is independent of the amount. The density of water is approximately 1g/mL whether you consider a drop of water or a swimming pool, but the mass is different in the two cases.
Dividing one extensive property by another extensive property generally gives an intensive value—for example: mass (extensive) divided by volume (extensive) gives density (intensive).
Examples of extensive properties include: [5] [2] [1]
In thermodynamics, some extensive quantities measure amounts that are conserved in a thermodynamic process of transfer. They are transferred across a wall between two thermodynamic systems or subsystems. For example, species of matter may be transferred through a semipermeable membrane. Likewise, volume may be thought of as transferred in a process in which there is a motion of the wall between two systems, increasing the volume of one and decreasing that of the other by equal amounts.
On the other hand, some extensive quantities measure amounts that are not conserved in a thermodynamic process of transfer between a system and its surroundings. In a thermodynamic process in which a quantity of energy is transferred from the surroundings into or out of a system as heat, a corresponding quantity of entropy in the system respectively increases or decreases, but, in general, not in the same amount as in the surroundings. Likewise, a change in the amount of electric polarization in a system is not necessarily matched by a corresponding change in electric polarization in the surroundings.
In a thermodynamic system, transfers of extensive quantities are associated with changes in respective specific intensive quantities. For example, a volume transfer is associated with a change in pressure. An entropy change is associated with a temperature change. A change in the amount of electric polarization is associated with an electric field change. The transferred extensive quantities and their associated respective intensive quantities have dimensions that multiply to give the dimensions of energy. The two members of such respective specific pairs are mutually conjugate. Either one, but not both, of a conjugate pair may be set up as an independent state variable of a thermodynamic system. Conjugate setups are associated by Legendre transformations.
The ratio of two extensive properties of the same object or system is an intensive property. For example, the ratio of an object's mass and volume, which are two extensive properties, is density, which is an intensive property. [9]
More generally properties can be combined to give new properties, which may be called derived or composite properties. For example, the base quantities [10] mass and volume can be combined to give the derived quantity [11] density. These composite properties can sometimes also be classified as intensive or extensive. Suppose a composite property is a function of a set of intensive properties and a set of extensive properties , which can be shown as . If the size of the system is changed by some scaling factor, , only the extensive properties will change, since intensive properties are independent of the size of the system. The scaled system, then, can be represented as .
Intensive properties are independent of the size of the system, so the property F is an intensive property if for all values of the scaling factor, ,
(This is equivalent to saying that intensive composite properties are homogeneous functions of degree 0 with respect to .)
It follows, for example, that the ratio of two extensive properties is an intensive property. To illustrate, consider a system having a certain mass, , and volume, . The density, is equal to mass (extensive) divided by volume (extensive): . If the system is scaled by the factor , then the mass and volume become and , and the density becomes ; the two s cancel, so this could be written mathematically as , which is analogous to the equation for above.
The property is an extensive property if for all ,
(This is equivalent to saying that extensive composite properties are homogeneous functions of degree 1 with respect to .) It follows from Euler's homogeneous function theorem that
where the partial derivative is taken with all parameters constant except . [12] This last equation can be used to derive thermodynamic relations.
A specific property is the intensive property obtained by dividing an extensive property of a system by its mass. For example, heat capacity is an extensive property of a system. Dividing heat capacity, , by the mass of the system gives the specific heat capacity, , which is an intensive property. When the extensive property is represented by an upper-case letter, the symbol for the corresponding intensive property is usually represented by a lower-case letter. Common examples are given in the table below. [5]
Extensive property | Symbol | SI units | Intensive (specific) property | Symbol | SI units | Intensive (molar) property | Symbol | SI units |
---|---|---|---|---|---|---|---|---|
Volume | V | m3 or L | Specific volume a.k.a. the reciprocal of density | v | m3/kg or L/kg | Molar volume | Vm | m3/mol or L/mol |
Internal energy | U | J | Specific internal energy | u | J/kg | Molar internal energy | Um | J/mol |
Enthalpy | H | J | Specific enthalpy | h | J/kg | Molar enthalpy | Hm | J/mol |
Gibbs free energy | G | J | Specific Gibbs free energy | g | J/kg | Chemical potential | Gmorμ | J/mol |
Entropy | S | J/K | Specific entropy | s | J/(kg·K) | Molar entropy | Sm | J/(mol·K) |
Heat capacity at constant volume | CV | J/K | Specific heat capacity at constant volume | cV | J/(kg·K) | Molar heat capacity at constant volume | CV,m | J/(mol·K) |
Heat capacity at constant pressure | CP | J/K | Specific heat capacity at constant pressure | cP | J/(kg·K) | Molar heat capacity at constant pressure | CP,m | J/(mol·K) |
If the amount of substance in moles can be determined, then each of these thermodynamic properties may be expressed on a molar basis, and their name may be qualified with the adjective molar, yielding terms such as molar volume, molar internal energy, molar enthalpy, and molar entropy. The symbol for molar quantities may be indicated by adding a subscript "m" to the corresponding extensive property. For example, molar enthalpy is . [5] Molar Gibbs free energy is commonly referred to as chemical potential, symbolized by , particularly when discussing a partial molar Gibbs free energy for a component in a mixture.
For the characterization of substances or reactions, tables usually report the molar properties referred to a standard state. In that case a superscript is added to the symbol. Examples:
The general validity of the division of physical properties into extensive and intensive kinds has been addressed in the course of science. [13] Redlich noted that, although physical properties and especially thermodynamic properties are most conveniently defined as either intensive or extensive, these two categories are not all-inclusive and some well-defined concepts like the square-root of a volume conform to neither definition. [1]
Other systems, for which standard definitions do not provide a simple answer, are systems in which the subsystems interact when combined. Redlich pointed out that the assignment of some properties as intensive or extensive may depend on the way subsystems are arranged. For example, if two identical galvanic cells are connected in parallel, the voltage of the system is equal to the voltage of each cell, while the electric charge transferred (or the electric current) is extensive. However, if the same cells are connected in series, the charge becomes intensive and the voltage extensive. [1] The IUPAC definitions do not consider such cases. [5]
Some intensive properties do not apply at very small sizes. For example, viscosity is a macroscopic quantity and is not relevant for extremely small systems. Likewise, at a very small scale color is not independent of size, as shown by quantum dots, whose color depends on the size of the "dot".
Enthalpy is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere. The pressure–volume term expresses the work that was done against constant external pressure to establish the system's physical dimensions from to some final volume , i.e. to make room for it by displacing its surroundings. The pressure-volume term is very small for solids and liquids at common conditions, and fairly small for gases. Therefore, enthalpy is a stand-in for energy in chemical systems; bond, lattice, solvation, and other chemical "energies" are actually enthalpy differences. As a state function, enthalpy depends only on the final configuration of internal energy, pressure, and volume, not on the path taken to achieve it.
In thermodynamics, the specific heat capacity of a substance is the amount of heat that must be added to one unit of mass of the substance in order to cause an increase of one unit in temperature. It is also referred to as massic heat capacity or as the specific heat. More formally it is the heat capacity of a sample of the substance divided by the mass of the sample. The SI unit of specific heat capacity is joule per kelvin per kilogram, J⋅kg−1⋅K−1. For example, the heat required to raise the temperature of 1 kg of water by 1 K is 4184 joules, so the specific heat capacity of water is 4184 J⋅kg−1⋅K−1.
An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.
The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes. The law distinguishes two principal forms of energy transfer, heat and thermodynamic work, that modify a thermodynamic system containing a constant amount of matter. The law also defines the internal energy of a system, an extensive property for taking account of the balance of heat and work in the system. Energy cannot be created or destroyed, but it can be transformed from one form to another. In an isolated system the sum of all forms of energy is constant.
In thermodynamics, activity is a measure of the "effective concentration" of a species in a mixture, in the sense that the species' chemical potential depends on the activity of a real solution in the same way that it would depend on concentration for an ideal solution. The term "activity" in this sense was coined by the American chemist Gilbert N. Lewis in 1907.
In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure-volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure. It also provides a necessary condition for processes such as chemical reactions that may occur under these conditions. The Gibbs free energy is expressed asWhere:
Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular, of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter, having the unit symbol mol/L or mol/dm3 in SI units. A solution with a concentration of 1 mol/L is said to be 1 molar, commonly designated as 1 M or 1 M. Molarity is often depicted with square brackets around the substance of interest; for example, the molarity of the hydrogen ion is depicted as [H+].
In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.
The internal energy of a thermodynamic system is the energy of the system as a state function, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization. It excludes the kinetic energy of motion of the system as a whole and the potential energy of position of the system as a whole, with respect to its surroundings and external force fields. It includes the thermal energy, i.e., the constituent particles' kinetic energies of motion relative to the motion of the system as a whole. The internal energy of an isolated system cannot change, as expressed in the law of conservation of energy, a foundation of the first law of thermodynamics. The notion has been introduced to describe the systems characterized by temperature variations, temperature being added to the set of state parameters, the position variables known in mechanics, in a similar way to potential energy of the conservative fields of force, gravitational and electrostatic. Internal energy changes equal the algebraic sum of the heat transferred and the work done. In systems without temperature changes, potential energy changes equal the work done by/on the system.
In the thermodynamics of equilibrium, a state function, function of state, or point function for a thermodynamic system is a mathematical function relating several state variables or state quantities that depend only on the current equilibrium thermodynamic state of the system, not the path which the system has taken to reach that state. A state function describes equilibrium states of a system, thus also describing the type of system. A state variable is typically a state function so the determination of other state variable values at an equilibrium state also determines the value of the state variable as the state function at that state. The ideal gas law is a good example. In this law, one state variable is a function of other state variables so is regarded as a state function. A state function could also describe the number of a certain type of atoms or molecules in a gaseous, liquid, or solid form in a heterogeneous or homogeneous mixture, or the amount of energy required to create such a system or change the system into a different equilibrium state.
In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.
A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.
In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy (U) of the system. This article uses the physics sign convention for work, where positive work is work done by the system. Using this convention, by the first law of thermodynamics,
In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.
Thermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics.
In physics and mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems. The canonical ensemble gives the probability of the system X being in state x as
The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass. Thus, it characterizes how easily a mass of material can be penetrated by a beam of light, sound, particles, or other energy or matter. In addition to visible light, mass attenuation coefficients can be defined for other electromagnetic radiation, sound, or any other beam that can be attenuated. The SI unit of mass attenuation coefficient is the square metre per kilogram. Other common units include cm2/g and L⋅g−1⋅cm−1. Mass extinction coefficient is an old term for this quantity.
In thermodynamics, a partial molar property is a quantity which describes the variation of an extensive property of a solution or mixture with changes in the molar composition of the mixture at constant temperature and pressure. It is the partial derivative of the extensive property with respect to the amount of the component of interest. Every extensive property of a mixture has a corresponding partial molar property.
In thermodynamics, an apparent molar property of a solution component in a mixture or solution is a quantity defined with the purpose of isolating the contribution of each component to the non-ideality of the mixture. It shows the change in the corresponding solution property per mole of that component added, when all of that component is added to the solution. It is described as apparent because it appears to represent the molar property of that component in solution, provided that the properties of the other solution components are assumed to remain constant during the addition. However this assumption is often not justified, since the values of apparent molar properties of a component may be quite different from its molar properties in the pure state.
In thermodynamics, the volume of a system is an important extensive parameter for describing its thermodynamic state. The specific volume, an intensive property, is the system's volume per unit mass. Volume is a function of state and is interdependent with other thermodynamic properties such as pressure and temperature. For example, volume is related to the pressure and temperature of an ideal gas by the ideal gas law. The physical region covered by a system may or may not coincide with a control volume used to analyze the system.
A variable ... proportional to the size of the system is referred to as an extensive variable.
Suresh. "What is the difference between intensive and extensive properties in thermodynamics?". Callinterview.com. Retrieved 7 April 2024.