Thermodynamics

Last updated

Annotated color version of the original 1824 Carnot heat engine showing the hot body (boiler), working body (system, steam), and cold body (water), the letters labeled according to the stopping points in Carnot cycle. Carnot engine (hot body - working body - cold body).jpg
Annotated color version of the original 1824 Carnot heat engine showing the hot body (boiler), working body (system, steam), and cold body (water), the letters labeled according to the stopping points in Carnot cycle.

Thermodynamics is the branch of physics that deals with heat and temperature, and their relation to energy, work, radiation, and properties of matter. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, chemical engineering and mechanical engineering, but also in fields as complex as meteorology.

Physics Study of the fundamental properties of matter and energy

Physics is the natural science that studies matter, its motion and behavior through space and time, and that studies the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, and its main goal is to understand how the universe behaves.

Heat energy transfer process, or its amount (and direction), that is associated with a temperature difference

In thermodynamics, heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter. The mechanisms include conduction, through direct contact of immobile bodies, or through a wall or barrier that is impermeable to matter; or radiation between separated bodies; or isochoric mechanical work done by the surroundings on the system of interest; or Joule heating by an electric current driven through the system of interest by an external system; or a combination of these. When there is a suitable path between two systems with different temperatures, heat transfer occurs necessarily, immediately, and spontaneously from the hotter to the colder system. Thermal conduction occurs by the stochastic (random) motion of microscopic particles. In contrast, thermodynamic work is defined by mechanisms that act macroscopically and directly on the system's whole-body state variables; for example, change of the system's volume through a piston's motion with externally measurable force; or change of the system's internal electric polarization through an externally measurable change in electric field. The definition of heat transfer does not require that the process be in any sense smooth. For example, a bolt of lightning may transfer heat to a body.

Temperature physical property of matter that quantitatively expresses the common notions of hot and cold

A temperature expresses hot and cold, as measured with a thermometer. In physics, hotness is a body's ability to impart energy as heat to another body that is colder.

Contents

Historically, thermodynamics developed out of a desire to increase the efficiency of early steam engines, particularly through the work of French physicist Nicolas Léonard Sadi Carnot (1824) who believed that engine efficiency was the key that could help France win the Napoleonic Wars. [1] Scots-Irish physicist Lord Kelvin was the first to formulate a concise definition of thermodynamics in 1854 [2] which stated, "Thermo-dynamics is the subject of the relation of heat to forces acting between contiguous parts of bodies, and the relation of heat to electrical agency."

Steam engine Heat engine that performs mechanical work using steam as its working fluid

A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force is transformed, by a connecting rod and flywheel, into rotational force for work. The term "steam engine" is generally applied only to reciprocating engines as just described, not to the steam turbine.

Nicolas Léonard Sadi Carnot French physicist, the "father of thermodynamics" (1796–1832)

Nicolas Léonard Sadi Carnot was a French military scientist and physicist, often described as the "father of thermodynamics". Like Copernicus, he published only one book, the Reflections on the Motive Power of Fire, in which he expressed, at the age of 27 years, the first successful theory of the maximum efficiency of heat engines. In this work he laid the foundations of an entirely new discipline, thermodynamics. Carnot's work attracted little attention during his lifetime, but it was later used by Rudolf Clausius and Lord Kelvin to formalize the second law of thermodynamics and define the concept of entropy.

Napoleonic Wars Series of early 19th century European wars

The Napoleonic Wars (1803–1815) were a series of major conflicts pitting the French Empire and its allies, led by Napoleon I, against a fluctuating array of European powers formed into various coalitions, financed and usually led by the United Kingdom. The wars stemmed from the unresolved disputes associated with the French Revolution and its resultant conflict. The wars are often categorised into five conflicts, each termed after the coalition that fought Napoleon: the Third Coalition (1805), the Fourth (1806–07), the Fifth (1809), the Sixth (1813), and the Seventh (1815).

The initial application of thermodynamics to mechanical heat engines was quickly extended to the study of chemical compounds and chemical reactions. Chemical thermodynamics studies the nature of the role of entropy in the process of chemical reactions and has provided the bulk of expansion and knowledge of the field. [3] [4] [5] [6] [7] [8] [9] [10] [11] Other formulations of thermodynamics emerged. Statistical thermodynamics, or statistical mechanics, concerns itself with statistical predictions of the collective motion of particles from their microscopic behavior. In 1909, Constantin Carathéodory presented a purely mathematical approach in an axiomatic formulation, a description often referred to as geometrical thermodynamics.

Chemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measurements of various thermodynamic properties, but also the application of mathematical methods to the study of chemical questions and the spontaneity of processes.

Entropy physical property of the state of a system, measure of disorder.

In statistical mechanics, entropy is an extensive property of a thermodynamic system. It is closely related to the number Ω of microscopic configurations that are consistent with the macroscopic quantities that characterize the system. Entropy expresses the number Ω of different configurations that a system defined by macroscopic variables could assume. Under the assumption that each microstate is equally probable, the entropy is the natural logarithm of the number of microstates, multiplied by the Boltzmann constant kB. Formally,

Chemical reaction Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

Introduction

A description of any thermodynamic system employs the four laws of thermodynamics that form an axiomatic basis. The first law specifies that energy can be exchanged between physical systems as heat and work. [12] The second law defines the existence of a quantity called entropy, that describes the direction, thermodynamically, that a system can evolve and quantifies the state of order of a system and that can be used to quantify the useful work that can be extracted from the system. [13]

Laws of thermodynamics law that defines fundamental physical quantities that characterize thermodynamic systems and their behavior

The three laws of thermodynamics define physical quantities that characterize thermodynamic systems at thermal equilibrium. The laws describe how these quantities behave under various circumstances, and preclude the possibility of certain phenomena.

In thermodynamics, interactions between large ensembles of objects are studied and categorized. Central to this are the concepts of the thermodynamic system and its surroundings . A system is composed of particles, whose average motions define its properties, and those properties are in turn related to one another through equations of state. Properties can be combined to express internal energy and thermodynamic potentials, which are useful for determining conditions for equilibrium and spontaneous processes.

Equation of state An equation describing the state of matter under a given set of physical conditions

In physics and thermodynamics, an equation of state is a thermodynamic equation relating state variables which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature (PVT), or internal energy. Equations of state are useful in describing the properties of fluids, mixtures of fluids, solids, and the interior of stars.

Internal energy energy contained in a system, excluding energy due to its position as a body in external force fields or its overall motion

In thermodynamics, the internal energy of a system is the energy contained within the system. It is the energy necessary to create or prepare the system in any given state, but does not include the kinetic energy of motion of the system as a whole, nor the potential energy of the system as a whole due to external force fields which includes the energy of displacement of the system's surroundings. It keeps account of the gains and losses of energy of the system that are due to changes in its internal state.

Thermodynamic potential scalar physical quantities representing system states

A thermodynamic potential is a scalar quantity used to represent the thermodynamic state of a system. The concept of thermodynamic potentials was introduced by Pierre Duhem in 1886. Josiah Willard Gibbs in his papers used the term fundamental functions. One main thermodynamic potential that has a physical interpretation is the internal energy U. It is the energy of configuration of a given system of conservative forces and only has meaning with respect to a defined set of references. Expressions for all other thermodynamic energy potentials are derivable via Legendre transforms from an expression for U. In thermodynamics, external forces, such as gravity, are typically disregarded when formulating expressions for potentials. For example, while all the working fluid in a steam engine may have higher energy due to gravity while sitting on top of Mount Everest than it would at the bottom of the Mariana Trench, the gravitational potential energy term in the formula for the internal energy would usually be ignored because changes in gravitational potential within the engine during operation would be negligible. In a large system under even homogeneous external force, like the earth atmosphere under gravity, the intensive parameters should be studied locally having even in equilibrium different values in different places far from each other (see thermodynamic models of troposphere].

With these tools, thermodynamics can be used to describe how systems respond to changes in their environment. This can be applied to a wide variety of topics in science and engineering, such as engines, phase transitions, chemical reactions, transport phenomena, and even black holes. The results of thermodynamics are essential for other fields of physics and for chemistry, chemical engineering, corrosion engineering, aerospace engineering, mechanical engineering, cell biology, biomedical engineering, materials science, and economics, to name a few. [14] [15]

Science systematic enterprise that builds and organizes knowledge

Science is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.

Engineering applied science

Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.

Phase transition transitions between solid, liquid and gaseous states of matter, and, in rare cases, plasma

The term phase transition is most commonly used to describe transitions between solid, liquid, and gaseous states of matter, as well as plasma in rare cases. A phase of a thermodynamic system and the states of matter have uniform physical properties. During a phase transition of a given medium, certain properties of the medium change, often discontinuously, as a result of the change of external conditions, such as temperature, pressure, or others. For example, a liquid may become gas upon heating to the boiling point, resulting in an abrupt change in volume. The measurement of the external conditions at which the transformation occurs is termed the phase transition. Phase transitions commonly occur in nature and are used today in many technologies.

This article is focused mainly on classical thermodynamics which primarily studies systems in thermodynamic equilibrium. Non-equilibrium thermodynamics is often treated as an extension of the classical treatment, but statistical mechanics has brought many advances to that field.

The thermodynamicists representative of the original eight founding schools of thermodynamics. The schools with the most-lasting effect in founding the modern versions of thermodynamics are the Berlin school, particularly as established in Rudolf Clausius's 1865 textbook The Mechanical Theory of Heat, the Vienna school, with the statistical mechanics of Ludwig Boltzmann, and the Gibbsian school at Yale University, American engineer Willard Gibbs' 1876 On the Equilibrium of Heterogeneous Substances launching chemical thermodynamics. Eight founding schools.png
The thermodynamicists representative of the original eight founding schools of thermodynamics. The schools with the most-lasting effect in founding the modern versions of thermodynamics are the Berlin school, particularly as established in Rudolf Clausius’s 1865 textbook The Mechanical Theory of Heat, the Vienna school, with the statistical mechanics of Ludwig Boltzmann, and the Gibbsian school at Yale University, American engineer Willard Gibbs' 1876 On the Equilibrium of Heterogeneous Substances launching chemical thermodynamics.

History

The history of thermodynamics as a scientific discipline generally begins with Otto von Guericke who, in 1650, built and designed the world's first vacuum pump and demonstrated a vacuum using his Magdeburg hemispheres. Guericke was driven to make a vacuum in order to disprove Aristotle's long-held supposition that 'nature abhors a vacuum'. Shortly after Guericke, the English physicist and chemist Robert Boyle had learned of Guericke's designs and, in 1656, in coordination with English scientist Robert Hooke, built an air pump. [17] Using this pump, Boyle and Hooke noticed a correlation between pressure, temperature, and volume. In time, Boyle's Law was formulated, which states that pressure and volume are inversely proportional. Then, in 1679, based on these concepts, an associate of Boyle's named Denis Papin built a steam digester, which was a closed vessel with a tightly fitting lid that confined steam until a high pressure was generated.

Later designs implemented a steam release valve that kept the machine from exploding. By watching the valve rhythmically move up and down, Papin conceived of the idea of a piston and a cylinder engine. He did not, however, follow through with his design. Nevertheless, in 1697, based on Papin's designs, engineer Thomas Savery built the first engine, followed by Thomas Newcomen in 1712. Although these early engines were crude and inefficient, they attracted the attention of the leading scientists of the time.

The fundamental concepts of heat capacity and latent heat, which were necessary for the development of thermodynamics, were developed by Professor Joseph Black at the University of Glasgow, where James Watt was employed as an instrument maker. Black and Watt performed experiments together, but it was Watt who conceived the idea of the external condenser which resulted in a large increase in steam engine efficiency. [18] Drawing on all the previous work led Sadi Carnot, the "father of thermodynamics", to publish Reflections on the Motive Power of Fire (1824), a discourse on heat, power, energy and engine efficiency. The book outlined the basic energetic relations between the Carnot engine, the Carnot cycle, and motive power. It marked the start of thermodynamics as a modern science. [10]

The first thermodynamic textbook was written in 1859 by William Rankine, originally trained as a physicist and a civil and mechanical engineering professor at the University of Glasgow. [19] The first and second laws of thermodynamics emerged simultaneously in the 1850s, primarily out of the works of William Rankine, Rudolf Clausius, and William Thomson (Lord Kelvin).

The foundations of statistical thermodynamics were set out by physicists such as James Clerk Maxwell, Ludwig Boltzmann, Max Planck, Rudolf Clausius and J. Willard Gibbs.

During the years 1873–76 the American mathematical physicist Josiah Willard Gibbs published a series of three papers, the most famous being On the Equilibrium of Heterogeneous Substances , [3] in which he showed how thermodynamic processes, including chemical reactions, could be graphically analyzed, by studying the energy, entropy, volume, temperature and pressure of the thermodynamic system in such a manner, one can determine if a process would occur spontaneously. [20] Also Pierre Duhem in the 19th century wrote about chemical thermodynamics. [4] During the early 20th century, chemists such as Gilbert N. Lewis, Merle Randall, [5] and E. A. Guggenheim [6] [7] applied the mathematical methods of Gibbs to the analysis of chemical processes.

Etymology

The etymology of thermodynamics has an intricate history. [21] It was first spelled in a hyphenated form as an adjective (thermo-dynamic) and from 1854 to 1868 as the noun thermo-dynamics to represent the science of generalized heat engines. [21]

American biophysicist Donald Haynie claims that thermodynamics was coined in 1840 from the Greek root θέρμη therme, meaning “heat”, and δύναμις dynamis, meaning “power”. [22]

Pierre Perrot claims that the term thermodynamics was coined by James Joule in 1858 to designate the science of relations between heat and power, [10] however, Joule never used that term, but used instead the term perfect thermo-dynamic engine in reference to Thomson's 1849 [23] phraseology. [21]

By 1858, thermo-dynamics, as a functional term, was used in William Thomson's paper "An Account of Carnot's Theory of the Motive Power of Heat." [23]

Branches of thermodynamics

The study of thermodynamical systems has developed into several related branches, each using a different fundamental model as a theoretical or experimental basis, or applying the principles to varying types of systems.

Classical thermodynamics

Classical thermodynamics is the description of the states of thermodynamic systems at near-equilibrium, that uses macroscopic, measurable properties. It is used to model exchanges of energy, work and heat based on the laws of thermodynamics. The qualifier classical reflects the fact that it represents the first level of understanding of the subject as it developed in the 19th century and describes the changes of a system in terms of macroscopic empirical (large scale, and measurable) parameters. A microscopic interpretation of these concepts was later provided by the development of statistical mechanics.

Statistical mechanics

Statistical mechanics, also called statistical thermodynamics, emerged with the development of atomic and molecular theories in the late 19th century and early 20th century, and supplemented classical thermodynamics with an interpretation of the microscopic interactions between individual particles or quantum-mechanical states. This field relates the microscopic properties of individual atoms and molecules to the macroscopic, bulk properties of materials that can be observed on the human scale, thereby explaining classical thermodynamics as a natural result of statistics, classical mechanics, and quantum theory at the microscopic level.

Chemical thermodynamics

Chemical thermodynamics is the study of the interrelation of energy with chemical reactions or with a physical change of state within the confines of the laws of thermodynamics.

Equilibrium thermodynamics

Equilibrium thermodynamics is the study of transfers of matter and energy in systems or bodies that, by agencies in their surroundings, can be driven from one state of thermodynamic equilibrium to another. The term 'thermodynamic equilibrium' indicates a state of balance, in which all macroscopic flows are zero; in the case of the simplest systems or bodies, their intensive properties are homogeneous, and their pressures are perpendicular to their boundaries. In an equilibrium state there are no unbalanced potentials, or driving forces, between macroscopically distinct parts of the system. A central aim in equilibrium thermodynamics is: given a system in a well-defined initial equilibrium state, and given its surroundings, and given its constitutive walls, to calculate what will be the final equilibrium state of the system after a specified thermodynamic operation has changed its walls or surroundings.

Non-equilibrium thermodynamics is a branch of thermodynamics that deals with systems that are not in thermodynamic equilibrium. Most systems found in nature are not in thermodynamic equilibrium because they are not in stationary states, and are continuously and discontinuously subject to flux of matter and energy to and from other systems. The thermodynamic study of non-equilibrium systems requires more general concepts than are dealt with by equilibrium thermodynamics. Many natural systems still today remain beyond the scope of currently known macroscopic thermodynamic methods.

Laws of thermodynamics

Thermodynamics is principally based on a set of four laws which are universally valid when applied to systems that fall within the constraints implied by each. In the various theoretical descriptions of thermodynamics these laws may be expressed in seemingly differing forms, but the most prominent formulations are the following.

Zeroth Law

The zeroth law of thermodynamics states: If two systems are each in thermal equilibrium with a third, they are also in thermal equilibrium with each other.

This statement implies that thermal equilibrium is an equivalence relation on the set of thermodynamic systems under consideration. Systems are said to be in equilibrium if the small, random exchanges between them (e.g. Brownian motion) do not lead to a net change in energy. This law is tacitly assumed in every measurement of temperature. Thus, if one seeks to decide whether two bodies are at the same temperature, it is not necessary to bring them into contact and measure any changes of their observable properties in time. [24] The law provides an empirical definition of temperature, and justification for the construction of practical thermometers.

The zeroth law was not initially recognized as a separate law of thermodynamics, as its basis in thermodynamical equilibrium was implied in the other laws. The first, second, and third laws had been explicitly stated already, and found common acceptance in the physics community before the importance of the zeroth law for the definition of temperature was realized. As it was impractical to renumber the other laws, it was named the zeroth law.

First Law

The first law of thermodynamics states: The internal energy of an isolated system is constant.

This law is an expression of the principle of conservation of energy. It states that energy can be transformed (changed from one form to another), but cannot be created or destroyed. [25]

The first law is usually formulated by stating that the change in the internal energy of a closed thermodynamic system is equal to the difference between the heat supplied to the system and the amount of work done by the system on its surroundings. Internal energy is a principal property of the thermodynamic state, and is also known as a state function, whereas heat and work modify this state. A change of internal energy of a system may be achieved by any combination of heat added or removed and work performed on or by the system. The equilibrium internal energy does not depend on the manner, or on the path through intermediate steps, by which the system arrived at its state.

Second Law

The second law of thermodynamics states: Heat cannot spontaneously flow from a colder location to a hotter location.

This law is an expression of the universal principle of decay observable in nature. The second law is an observation of the fact that over time, differences in temperature, pressure, and chemical potential tend to even out in a physical system that is isolated from the outside world. Entropy is a measure of how much this process has progressed. The entropy of an isolated system which is not in equilibrium will tend to increase over time, approaching a maximum value at equilibrium. However, principles guiding systems that are far from equilibrium are still debatable. One of such principles is the maximum entropy production principle. [26] [27] It states that non-equilibrium systems behave such a way as to maximize its entropy production. [28]

In classical thermodynamics, the second law is a basic postulate applicable to any system involving heat energy transfer; in statistical thermodynamics, the second law is a consequence of the assumed randomness of molecular chaos. There are many versions of the second law, but they all have the same effect, which is to explain the phenomenon of irreversibility in nature.

Third Law

The third law of thermodynamics states: As the temperature of a system approaches absolute zero, all processes cease and the entropy of the system approaches a minimum value.

This law of thermodynamics is a statistical law of nature regarding entropy and the impossibility of reaching absolute zero of temperature. This law provides an absolute reference point for the determination of entropy. The entropy determined relative to this point is the absolute entropy. Alternate definitions include "the entropy of all systems and of all states of a system is smallest at absolute zero," or equivalently "it is impossible to reach the absolute zero of temperature by any finite number of processes".

Absolute zero, at which all activity would stop if it were possible to achieve, is −273.15 °C (degrees Celsius), or −459.67 °F (degrees Fahrenheit), or 0 K (kelvin), or 0° R (degrees Rankine).

System models

A diagram of a generic thermodynamic system System boundary.svg
A diagram of a generic thermodynamic system

An important concept in thermodynamics is the thermodynamic system, which is a precisely defined region of the universe under study. Everything in the universe except the system is called the surroundings. A system is separated from the remainder of the universe by a boundary which may be a physical boundary or notional, but which by convention defines a finite volume. Exchanges of work, heat, or matter between the system and the surroundings take place across this boundary.

In practice, the boundary of a system is simply an imaginary dotted line drawn around a volume within which is going to be a change in the internal energy of that volume. Anything that passes across the boundary that effects a change in the internal energy of the system needs to be accounted for in the energy balance equation. The volume can be the region surrounding a single atom resonating energy, such as Max Planck defined in 1900; it can be a body of steam or air in a steam engine, such as Sadi Carnot defined in 1824; it can be the body of a tropical cyclone, such as Kerry Emanuel theorized in 1986 in the field of atmospheric thermodynamics; it could also be just one nuclide (i.e. a system of quarks) as hypothesized in quantum thermodynamics, or the event horizon of a black hole.

Boundaries are of four types: fixed, movable, real, and imaginary. For example, in an engine, a fixed boundary means the piston is locked at its position, within which a constant volume process might occur. If the piston is allowed to move that boundary is movable while the cylinder and cylinder head boundaries are fixed. For closed systems, boundaries are real while for open systems boundaries are often imaginary. In the case of a jet engine, a fixed imaginary boundary might be assumed at the intake of the engine, fixed boundaries along the surface of the case and a second fixed imaginary boundary across the exhaust nozzle.

Generally, thermodynamics distinguishes three classes of systems, defined in terms of what is allowed to cross their boundaries:

Interactions of thermodynamic systems
Type of system Mass flow Work Heat
Open Green check.svgYGreen check.svgYGreen check.svgY
Closed Red x.svgNGreen check.svgYGreen check.svgY
Thermally isolated Red x.svgNGreen check.svgYRed x.svgN
Mechanically isolated Red x.svgNRed x.svgNGreen check.svgY
Isolated Red x.svgNRed x.svgNRed x.svgN

As time passes in an isolated system, internal differences of pressures, densities, and temperatures tend to even out. A system in which all equalizing processes have gone to completion is said to be in a state of thermodynamic equilibrium.

Once in thermodynamic equilibrium, a system's properties are, by definition, unchanging in time. Systems in equilibrium are much simpler and easier to understand than are systems which are not in equilibrium. Often, when analysing a dynamic thermodynamic process, the simplifying assumption is made that each intermediate state in the process is at equilibrium, producing thermodynamic processes which develop so slowly as to allow each intermediate step to be an equilibrium state and are said to be reversible processes.

States and processes

When a system is at equilibrium under a given set of conditions, it is said to be in a definite thermodynamic state. The state of the system can be described by a number of state quantities that do not depend on the process by which the system arrived at its state. They are called intensive variables or extensive variables according to how they change when the size of the system changes. The properties of the system can be described by an equation of state which specifies the relationship between these variables. State may be thought of as the instantaneous quantitative description of a system with a set number of variables held constant.

A thermodynamic process may be defined as the energetic evolution of a thermodynamic system proceeding from an initial state to a final state. It can be described by process quantities. Typically, each thermodynamic process is distinguished from other processes in energetic character according to what parameters, such as temperature, pressure, or volume, etc., are held fixed; Furthermore, it is useful to group these processes into pairs, in which each variable held constant is one member of a conjugate pair.

Several commonly studied thermodynamic processes are:

Instrumentation

There are two types of thermodynamic instruments, the meter and the reservoir. A thermodynamic meter is any device which measures any parameter of a thermodynamic system. In some cases, the thermodynamic parameter is actually defined in terms of an idealized measuring instrument. For example, the zeroth law states that if two bodies are in thermal equilibrium with a third body, they are also in thermal equilibrium with each other. This principle, as noted by James Maxwell in 1872, asserts that it is possible to measure temperature. An idealized thermometer is a sample of an ideal gas at constant pressure. From the ideal gas law pV=nRT, the volume of such a sample can be used as an indicator of temperature; in this manner it defines temperature. Although pressure is defined mechanically, a pressure-measuring device, called a barometer may also be constructed from a sample of an ideal gas held at a constant temperature. A calorimeter is a device which is used to measure and define the internal energy of a system.

A thermodynamic reservoir is a system which is so large that its state parameters are not appreciably altered when it is brought into contact with the system of interest. When the reservoir is brought into contact with the system, the system is brought into equilibrium with the reservoir. For example, a pressure reservoir is a system at a particular pressure, which imposes that pressure upon the system to which it is mechanically connected. The Earth's atmosphere is often used as a pressure reservoir. If ocean water is used to cool a power plant, the ocean is often a temperature reservoir in the analysis of the power plant cycle.

Conjugate variables

The central concept of thermodynamics is that of energy, the ability to do work. By the First Law, the total energy of a system and its surroundings is conserved. Energy may be transferred into a system by heating, compression, or addition of matter, and extracted from a system by cooling, expansion, or extraction of matter. In mechanics, for example, energy transfer equals the product of the force applied to a body and the resulting displacement.

Conjugate variables are pairs of thermodynamic concepts, with the first being akin to a "force" applied to some thermodynamic system, the second being akin to the resulting "displacement," and the product of the two equalling the amount of energy transferred. The common conjugate variables are:

Potentials

Thermodynamic potentials are different quantitative measures of the stored energy in a system. Potentials are used to measure the energy changes in systems as they evolve from an initial state to a final state. The potential used depends on the constraints of the system, such as constant temperature or pressure. For example, the Helmholtz and Gibbs energies are the energies available in a system to do useful work when the temperature and volume or the pressure and temperature are fixed, respectively.

The five most well known potentials are:

NameSymbolFormulaNatural variables
Internal energy
Helmholtz free energy
Enthalpy
Gibbs free energy
Landau Potential (Grand potential) ,

where is the temperature, the entropy, the pressure, the volume, the chemical potential, the number of particles in the system, and is the count of particles types in the system.

Thermodynamic potentials can be derived from the energy balance equation applied to a thermodynamic system. Other thermodynamic potentials can also be obtained through Legendre transformation.

Applied fields

See also

Lists and timelines

Related Research Articles

Thermodynamic free energy

The thermodynamic free energy is a concept useful in the thermodynamics of chemical or thermal processes in engineering and science. The change in the free energy is the maximum amount of work that a thermodynamic system can perform in a process at constant temperature, and its sign indicates whether a process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy, it is not absolute but depends on the choice of a zero point. Therefore, only relative free energy values, or changes in free energy, are physically meaningful.

Second law of thermodynamics law of physics stating that systems spontaneously evolve towards states of higher entropy

The second law of thermodynamics states that the total entropy of an isolated system can never decrease over time, and is constant if and only if all processes are reversible. Isolated systems spontaneously evolve towards thermodynamic equilibrium, the state with maximum entropy.

Thermodynamic equilibrium is an axiomatic concept of thermodynamics. It is an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable walls. In thermodynamic equilibrium there are no net macroscopic flows of matter or of energy, either within a system or between systems.

Reversible process (thermodynamics) process whose direction can be "reversed" by inducing infinitesimal changes to some property of the system via its surroundings, while not increasing entropy

In thermodynamics, a reversible process is a process whose direction can be "reversed" by inducing infinitesimal changes to some property of the system via its surroundings. Throughout the entire reversible process, the system is in thermodynamic equilibrium with its surroundings. Having been reversed, it leaves no change in either the system or the surroundings. Since it would take an infinite amount of time for the reversible process to finish, perfectly reversible processes are impossible. However, if the system undergoing the changes responds much faster than the applied change, the deviation from reversibility may be negligible. In a reversible cycle, a cyclical reversible process, the system and its surroundings will be returned to their original states if one half cycle is followed by the other half cycle.

Thermodynamic system precisely specified macroscopic region of the universe, defined by boundaries

A thermodynamic system is a group of material and/or radiative contents. Its properties may be described by thermodynamic state variables such as temperature, entropy, internal energy, and pressure.

Non-equilibrium thermodynamics branch of thermodynamics

Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of variables that represent an extrapolation of the variables used to specify the system in thermodynamic equilibrium. Non-equilibrium thermodynamics is concerned with transport processes and with the rates of chemical reactions. It relies on what may be thought of as more or less nearness to thermodynamic equilibrium. Non-equilibrium thermodynamics is a work in progress, not an established edifice. This article will try to sketch some approaches to it and some concepts important for it.

Irreversible process A process that is not reversible

In science, a process that is not reversible is called irreversible. This concept arises frequently in thermodynamics.

In thermodynamics, the exergy of a system is the maximum useful work possible during a process that brings the system into equilibrium with a heat reservoir, reaching maximum entropy. When the surroundings are the reservoir, exergy is the potential of a system to cause a change as it achieves equilibrium with its environment. Exergy is the energy that is available to be used. After the system and surroundings reach equilibrium, the exergy is zero. Determining exergy was also the first goal of thermodynamics. The term "exergy" was coined in 1956 by Zoran Rant (1904–1972) by using the Greek ex and ergon meaning "from work", but the concept was developed by J. Willard Gibbs in 1873.

Thermodynamic equations

Thermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics.

Equilibrium thermodynamics systematic study of transformations of matter and energy in systems in terms of a concept called thermodynamic equilibrium

Equilibrium Thermodynamics is the systematic study of transformations of matter and energy in systems in terms of a concept called thermodynamic equilibrium. The word equilibrium implies a state of balance. Equilibrium thermodynamics, in origins, derives from analysis of the Carnot cycle. Here, typically a system, as cylinder of gas, initially in its own state of internal thermodynamic equilibrium, is set out of balance via heat input from a combustion reaction. Then, through a series of steps, as the system settles into its final equilibrium state, work is extracted.

There are close parallels between the mathematical expressions for the thermodynamic entropy, usually denoted by S, of a physical system in the statistical thermodynamics established by Ludwig Boltzmann and J. Willard Gibbs in the 1870s, and the information-theoretic entropy, usually expressed as H, of Claude Shannon and Ralph Hartley developed in the 1940s. Shannon commented on the similarity upon publicizing information theory in A Mathematical Theory of Communication.

Work (thermodynamics) an energy transfer, or its amount (& direction), in a thermodynamic process due to macroscopic factors external to a thermodynamic system

In thermodynamics, work performed by a system is energy transferred by the system to its surroundings, by a mechanism through which the system can spontaneously exert macroscopic forces on its surroundings, where those forces, and their external effects, can be measured. In the surroundings, through suitable passive linkages, the whole of the work done by such forces can lift a weight. Also, just through such mechanisms, energy can transfer from the surroundings to the system; in a sign convention used in physics, such energy transfer is counted as a negative amount of work done by the system on its surroundings.

Entropy is a property of thermodynamical systems. The term entropy was introduced by Rudolf Clausius who named it from the Greek word τρoπή, "transformation". He considered transfers of energy as heat and work between bodies of matter, taking temperature into account. Bodies of radiation are also covered by the same kind of reasoning.

Atmospheric thermodynamics is the study of heat-to-work transformations that take place in the earth's atmosphere and manifest as weather or climate. Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and vertical instabilities in the atmosphere. Atmospheric thermodynamic diagrams are used as tools in the forecasting of storm development. Atmospheric thermodynamics forms a basis for cloud microphysics and convection parameterizations used in numerical weather models and is used in many climate considerations, including convective-equilibrium climate models.

Introduction to entropy

Entropy is an important concept in the branch of physics known as thermodynamics. The idea of "irreversibility" is central to the understanding of entropy. Everyone has an intuitive understanding of irreversibility. If one watches a movie of everyday life running forward and in reverse, it is easy to distinguish between the two. The movie running in reverse shows impossible things happening – water jumping out of a glass into a pitcher above it, smoke going down a chimney, water in a glass freezing to form ice cubes, crashed cars reassembling themselves, and so on. The intuitive meaning of expressions such as "you can't unscramble an egg", or "you can't take the cream out of the coffee" is that these are irreversible processes. No matter how long you wait, the cream won't jump out of the coffee into the creamer.

References

  1. Clausius, Rudolf (1850). On the Motive Power of Heat, and on the Laws which can be deduced from it for the Theory of Heat. Poggendorff's Annalen der Physik, LXXIX (Dover Reprint). ISBN   978-0-486-59065-3.
  2. William Thomson, LL.D. D.C.L., F.R.S. (1882). Mathematical and Physical Papers. 1. London, Cambridge: C.J. Clay, M.A. & Son, Cambridge University Press. p. 232.CS1 maint: multiple names: authors list (link)
  3. 1 2 Gibbs, Willard, J. (1874–1878). Transactions of the Connecticut Academy of Arts and Sciences. III. New Haven. pp. 108–248, 343–524.CS1 maint: multiple names: authors list (link)
  4. 1 2 Duhem, P.M.M. (1886). Le Potential Thermodynamique et ses Applications, Hermann, Paris.
  5. 1 2 Lewis, Gilbert N.; Randall, Merle (1923). Thermodynamics and the Free Energy of Chemical Substances. McGraw-Hill Book Co. Inc.
  6. 1 2 Guggenheim, E.A. (1933). Modern Thermodynamics by the Methods of J.W. Gibbs, Methuen, London.
  7. 1 2 Guggenheim, E.A. (1949/1967). Thermodynamics. An Advanced Treatment for Chemists and Physicists, 1st edition 1949, 5th edition 1967, North-Holland, Amsterdam.
  8. Ilya Prigogine, I. & Defay, R., translated by D.H. Everett (1954). Chemical Thermodynamics. Longmans, Green & Co., London. Includes classical non-equilibrium thermodynamics.CS1 maint: multiple names: authors list (link)
  9. Enrico Fermi (1956). Thermodynamics. Courier Dover Publications. p. ix. ISBN   978-0486603612. OCLC   230763036.
  10. 1 2 3 Perrot, Pierre (1998). A to Z of Thermodynamics. Oxford University Press. ISBN   978-0-19-856552-9. OCLC   123283342.
  11. Clark, John, O.E. (2004). The Essential Dictionary of Science. Barnes & Noble Books. ISBN   978-0-7607-4616-5. OCLC   58732844.CS1 maint: multiple names: authors list (link)
  12. Van Ness, H.C. (1983) [1969]. Understanding Thermodynamics . Dover Publications, Inc. ISBN   9780486632773. OCLC   8846081.
  13. Dugdale, J.S. (1998). Entropy and its Physical Meaning. Taylor and Francis. ISBN   978-0-7484-0569-5. OCLC   36457809.
  14. Smith, J.M.; Van Ness, H.C.; Abbott, M.M. (2005). Introduction to Chemical Engineering Thermodynamics. Journal of Chemical Education. 27. p. 584. Bibcode:1950JChEd..27..584S. doi:10.1021/ed027p584.3. ISBN   978-0-07-310445-4. OCLC   56491111.
  15. Haynie, Donald, T. (2001). Biological Thermodynamics. Cambridge University Press. ISBN   978-0-521-79549-4. OCLC   43993556.CS1 maint: multiple names: authors list (link)
  16. Schools of thermodynamics – EoHT.info.
  17. Partington, J.R. (1989). A Short History of Chemistry . Dover. OCLC   19353301.
  18. The Newcomen engine was improved from 1711 until Watt's work, making the efficiency comparison subject to qualification, but the increase from the 1865 version was on the order of 100%.
  19. Cengel, Yunus A.; Boles, Michael A. (2005). Thermodynamics – an Engineering Approach. McGraw-Hill. ISBN   978-0-07-310768-4.
  20. Gibbs, Willard (1993). The Scientific Papers of J. Willard Gibbs, Volume One: Thermodynamics. Ox Bow Press. ISBN   978-0-918024-77-0. OCLC   27974820.
  21. 1 2 3 "Thermodynamics (etymology)". EoHT.info.
  22. Donald T. Haynie (2008). Biological Thermodynamics (2 ed.). Cambridge University Press. p.  26.
  23. 1 2 Kelvin, William T. (1849) "An Account of Carnot's Theory of the Motive Power of Heat – with Numerical Results Deduced from Regnault's Experiments on Steam." Transactions of the Edinburg Royal Society, XVI. January 2. Scanned Copy
  24. Moran, Michael J. and Howard N. Shapiro, 2008. Fundamentals of Engineering Thermodynamics. 6th ed. Wiley and Sons: 16.
  25. "Energy Rules! Energy Conversion and the Laws of Thermodynamics – More About the First and Second Laws". Uwsp.edu. Archived from the original on 5 June 2010. Retrieved 12 September 2010.
  26. Onsager, Lars (1931). "Reciprocal Relations in Irreversible Processes". Phys. Rev. 37 (405): 405–426. Bibcode:1931PhRv...37..405O. doi:10.1103/physrev.37.405.
  27. Ziegler, H. (1983). An Introduction to Thermomechanics. North Holland.
  28. Belkin, Andrey; et., al. (2015). "Self-Assembled Wiggling Nano-Structures and the Principle of Maximum Entropy Production". Sci. Rep. 5: 8323. Bibcode:2015NatSR...5E8323B. doi:10.1038/srep08323. PMC   4321171 . PMID   25662746.

Further reading

The following titles are more technical: