Physics education or physics teaching refers to the education methods currently used to teach physics. The occupation is called physics educator or physics teacher. Physics education research refers to an area of pedagogical research that seeks to improve those methods. Historically, physics has been taught at the high school and college level primarily by the lecture method together with laboratory exercises aimed at verifying concepts taught in the lectures. These concepts are better understood when lectures are accompanied with demonstration, hand-on experiments, and questions that require students to ponder what will happen in an experiment and why. Students who participate in active learning for example with hands-on experiments learn through self-discovery. By trial and error they learn to change their preconceptions about phenomena in physics and discover the underlying concepts. Physics education is part of the broader area of science education.
In Ancient Greece, Aristotle wrote what is considered now as the first textbook of physics. [1] Aristotle's ideas were taught unchanged until the Late Middle Ages, when scientists started making discoveries that didn't fit them. For example, Copernicus' discovery contradicted Aristotle's idea of an Earth-centric universe. Aristotle's ideas about motion weren't displaced until the end of the 17th century, when Newton published his ideas.
Today's physics students often think of physics concepts in Aristotelian terms, despite being taught only Newtonian concepts. [2]
Teaching strategies are the various techniques used to facilitate the education of students with different learning styles. The different teaching strategies are intended to help students develop critical thinking and engage with the material. The choice of teaching strategy depends on the concept being taught, and indeed on the interest of the students.
Methods/Approaches for teaching physics
Number of Publications on Students' Ideas on the Bibliography by Duit (2005) | |
---|---|
Fragment | Publication |
Mechanics (force)* | 792 |
Electricity (electrical circuit) | 444 |
Optics | 234 |
Particle model | 226 |
Thermal physics (heat/temp.) | 192 |
Energy | 176 |
Astronomy (Earth in space) | 121 |
Quantum physics | 77 |
Nonlinear systems (chaos) | 35 |
Sound | 28 |
Magnetism | 25 |
Relativity | 8 |
* Predominant concept in brackets. Adapted from Duit, R., H. Niedderer and H. Schecker (see ref.). |
Physics education research is the study of how physics is taught and how students learn physics. It a subfield of educational research.
A teaching method is a set of principles and methods used by teachers to enable student learning. These strategies are determined partly by the subject matter to be taught, partly by the relative expertise of the learners, and partly by constraints caused by the learning environment. For a particular teaching method to be appropriate and efficient it has to take into account the learner, the nature of the subject matter, and the type of learning it is supposed to bring about.
Science education is the teaching and learning of science to school children, college students, or adults within the general public. The field of science education includes work in science content, science process, some social science, and some teaching pedagogy. The standards for science education provide expectations for the development of understanding for students through the entire course of their K-12 education and beyond. The traditional subjects included in the standards are physical, life, earth, space, and human sciences.
Instructional scaffolding is the support given to a student by an instructor throughout the learning process. This support is specifically tailored to each student; this instructional approach allows students to experience student-centered learning, which tends to facilitate more efficient learning than teacher-centered learning. This learning process promotes a deeper level of learning than many other common teaching strategies.
Active learning is "a method of learning in which students are actively or experientially involved in the learning process and where there are different levels of active learning, depending on student involvement." Bonwell & Eison (1991) states that "students participate [in active learning] when they are doing something besides passively listening." According to Hanson and Moser (2003) using active teaching techniques in the classroom can create better academic outcomes for students. Scheyvens, Griffin, Jocoy, Liu, & Bradford (2008) further noted that "by utilizing learning strategies that can include small-group work, role-play and simulations, data collection and analysis, active learning is purported to increase student interest and motivation and to build students ‘critical thinking, problem-solving and social skills". In a report from the Association for the Study of Higher Education, authors discuss a variety of methodologies for promoting active learning. They cite literature that indicates students must do more than just listen in order to learn. They must read, write, discuss, and be engaged in solving problems. This process relates to the three learning domains referred to as knowledge, skills and attitudes (KSA). This taxonomy of learning behaviors can be thought of as "the goals of the learning process." In particular, students must engage in such higher-order thinking tasks as analysis, synthesis, and evaluation.
A concept inventory is a criterion-referenced test designed to help determine whether a student has an accurate working knowledge of a specific set of concepts. Historically, concept inventories have been in the form of multiple-choice tests in order to aid interpretability and facilitate administration in large classes. Unlike a typical, teacher-authored multiple-choice test, questions and response choices on concept inventories are the subject of extensive research. The aims of the research include ascertaining (a) the range of what individuals think a particular question is asking and (b) the most common responses to the questions. Concept inventories are evaluated to ensure test reliability and validity. In its final form, each question includes one correct answer and several distractors.
Project-based learning is a teaching method that involves a dynamic classroom approach in which it is believed that students acquire a deeper knowledge through active exploration of real-world challenges and problems. Students learn about a subject by working for an extended period of time to investigate and respond to a complex question, challenge, or problem. It is a style of active learning and inquiry-based learning. Project-Based Learning is a form of experiential learning that emphasizes active, hands-on engagement with real-world problems. Project-based learning contrasts with paper-based, rote memorization, or teacher-led instruction that presents established facts or portrays a smooth path to knowledge by instead posing questions, problems, or scenarios.
Constructivist teaching is based on constructivism. Constructivist teaching is based on the belief that learning occurs as learners are actively involved in a process of meaning and knowledge construction as opposed to passively receiving information.
Chemistry education is the study of teaching and learning chemistry. It is one subset of STEM education or discipline-based education research (DBER). Topics in chemistry education include understanding how students learn chemistry and determining the most efficient methods to teach chemistry. There is a constant need to improve chemistry curricula and learning outcomes based on findings of chemistry education research (CER). Chemistry education can be improved by changing teaching methods and providing appropriate training to chemistry instructors, within many modes, including classroom lectures, demonstrations, and laboratory activities.
Robert Karplus was a theoretical physicist and leader in the field of science education.
The Mechanical Universe...And Beyond is a 52-part telecourse, filmed at the California Institute of Technology, that introduces university level physics, covering topics from Copernicus to quantum mechanics. The 1985-86 series was produced by Caltech and INTELECOM, a nonprofit consortium of California community colleges now known as Intelecom Learning, with financial support from Annenberg/CPB. The series, which aired on PBS affiliate stations before being distributed on LaserDisc and eventually YouTube, is known for its use of computer animation.
Discovery learning is a technique of inquiry-based learning and is considered a constructivist based approach to education. It is also referred to as problem-based learning, experiential learning and 21st century learning. It is supported by the work of learning theorists and psychologists Jean Piaget, Jerome Bruner, and Seymour Papert.
Demonstration involves showing by reason or proof, explaining or making clear by use of examples or experiments. Put more simply, demonstration means 'to clearly show'.
Scientific misconceptions are commonly held beliefs about science that have no basis in actual scientific fact. Scientific misconceptions can also refer to preconceived notions based on religious and/or cultural influences. Many scientific misconceptions occur because of faulty teaching styles and the sometimes distancing nature of true scientific texts. Because students' prior knowledge and misconceptions are important factors for learning science, science teachers should be able to identify and address these conceptions.
Inquiry-based learning is a form of active learning that starts by posing questions, problems or scenarios. It contrasts with traditional education, which generally relies on the teacher presenting facts and their knowledge about the subject. Inquiry-based learning is often assisted by a facilitator rather than a lecturer. Inquirers will identify and research issues and questions to develop knowledge or solutions. Inquiry-based learning includes problem-based learning, and is generally used in small-scale investigations and projects, as well as research. The inquiry-based instruction is principally very closely related to the development and practice of thinking and problem-solving skills.
Eric M. Rogers was a British writer and physics educator. He is perhaps best known for his 1960 textbook Physics for the Inquiring Mind. The book, subtitled The Methods, Nature, and Philosophy of Physical Science, was based on courses he gave at Princeton University, where he taught from 1942 to 1971. Rogers also headed the Nuffield Science Teaching Project programme in physics education in the 1960s.
John Gordon King (1925–2014) was an English-born American physicist who was the Francis Friedman Professor of Physics (emeritus) at the Massachusetts Institute of Technology, the former director of MIT’s Molecular Beam Laboratory, and the former associate director of MIT’s Research Laboratory of Electronics.
Peer instruction is an evidence-based, interactive teaching method popularized by Harvard Professor Eric Mazur in the early 1990s. Originally used in many schools, including introductory undergraduate physics classes at Harvard University, peer instruction is used in various disciplines and institutions around the globe. It is a student-centered approach that involves flipping the traditional classroom by moving information transfer out and moving information assimilation, or application of learning, into the classroom. There is some research that supports the effectiveness of peer instruction over more traditional teaching methods, such as traditional lecture.
A flipped classroom is an instructional strategy and a type of blended learning. It aims to increase student engagement and learning by having pupils complete readings at home, and work on live problem-solving during class time. This pedagogical style moves activities, including those that may have traditionally been considered homework, into the classroom. With a flipped classroom, students watch online lectures, collaborate in online discussions, or carry out research at home, while actively engaging concepts in the classroom with a mentor's guidance.
PhET Interactive Simulations, a project at the University of Colorado Boulder, is a non-profit open educational resource project that creates and hosts explorable explanations. It was founded in 2002 by Nobel Laureate Carl Wieman. PhET began with Wieman's vision to improve the way science is taught and learned. Their stated mission is "To advance science and math literacy and education worldwide through free interactive simulations."
Physics education research (PER) is a form of discipline-based education research specifically related to the study of the teaching and learning of physics, often with the aim of improving the effectiveness of student learning. PER draws from other disciplines, such as sociology, cognitive science, education and linguistics, and complements them by reflecting the disciplinary knowledge and practices of physics. Approximately eighty-five institutions in the United States conduct research in science and physics education.
Miscellaneous:
{{cite journal}}
: CS1 maint: multiple names: authors list (link)