Classical physics is a group of physics theories that predate modern, more complete, or more widely applicable theories. If a currently accepted theory is considered to be modern, and its introduction represented a major paradigm shift, then the previous theories, or new theories based on the older paradigm, will often be referred to as belonging to the area of "classical physics".
As such, the definition of a classical theory depends on context. Classical physical concepts are often used when modern theories are unnecessarily complex for a particular situation. Most often, classical physics refers to pre-1900 physics, while modern physics refers to post-1900 physics, which incorporates elements of quantum mechanics and relativity. [1]
Part of a series on |
Classical mechanics |
---|
Classical theory has at least two distinct meanings in physics. In the context of quantum mechanics, classical theory refers to theories of physics that do not use the quantisation paradigm, which includes classical mechanics and relativity. [2] Likewise, classical field theories, such as general relativity and classical electromagnetism, are those that do not use quantum mechanics. [3] In the context of general and special relativity, classical theories are those that obey Galilean relativity. [4]
Depending on point of view, among the branches of theory sometimes included in classical physics are variably:
In contrast to classical physics, "modern physics" is a slightly looser term that may refer to just quantum physics or to 20th- and 21st-century physics in general. Modern physics includes quantum theory and relativity, when applicable.
A physical system can be described by classical physics when it satisfies conditions such that the laws of classical physics are approximately valid.
In practice, physical objects ranging from those larger than atoms and molecules, to objects in the macroscopic and astronomical realm, can be well-described (understood) with classical mechanics. Beginning at the atomic level and lower, the laws of classical physics break down and generally do not provide a correct description of nature. Electromagnetic fields and forces can be described well by classical electrodynamics at length scales and field strengths large enough that quantum mechanical effects are negligible. Unlike quantum physics, classical physics is generally characterized by the principle of complete determinism, although deterministic interpretations of quantum mechanics do exist.
From the point of view of classical physics as being non-relativistic physics, the predictions of general and special relativity are significantly different from those of classical theories, particularly concerning the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light. Traditionally, light was reconciled with classical mechanics by assuming the existence of a stationary medium through which light propagated, the luminiferous aether, which was later shown not to exist.
Mathematically, classical physics equations are those in which the Planck constant does not appear. According to the correspondence principle and Ehrenfest's theorem, as a system becomes larger or more massive the classical dynamics tends to emerge, with some exceptions, such as superfluidity. This is why we can usually ignore quantum mechanics when dealing with everyday objects and the classical description will suffice. However, one of the most vigorous ongoing fields of research in physics is classical-quantum correspondence. This field of research is concerned with the discovery of how the laws of quantum physics give rise to classical physics found at the limit of the large scales of the classical level.
Today, a computer performs millions of arithmetic operations in seconds to solve a classical differential equation, while Newton (one of the fathers of the differential calculus) would take hours to solve the same equation by manual calculation, even if he were the discoverer of that particular equation.
Computer modeling is essential for quantum and relativistic physics. Classical physics is considered the limit of quantum mechanics for a large number of particles. On the other hand, classic mechanics is derived from relativistic mechanics. For example, in many formulations from special relativity, a correction factor (v/c)2 appears, where v is the velocity of the object and c is the speed of light. For velocities much smaller than that of light, one can neglect the terms with c2 and higher that appear. These formulas then reduce to the standard definitions of Newtonian kinetic energy and momentum. This is as it should be, for special relativity must agree with Newtonian mechanics at low velocities. Computer modeling has to be as real as possible. Classical physics would introduce an error as in the superfluidity case. In order to produce reliable models of the world, one can not use classical physics. It is true that quantum theories consume time and computer resources, and the equations of classical physics could be resorted to in order to provide a quick solution, but such a solution would lack reliability.
Computer modeling would use only the energy criteria to determine which theory to use: relativity or quantum theory, when attempting to describe the behavior of an object. A physicist would use a classical model to provide an approximation before more exacting models are applied and those calculations proceed.
In a computer model, there is no need to use the speed of the object if classical physics is excluded. Low-energy objects would be handled by quantum theory and high-energy objects by relativity theory. [5] [6] [7]
The many-worlds interpretation (MWI) is a philosophical position about how the mathematics used in quantum mechanics relates to physical reality. It asserts that the universal wavefunction is objectively real, and that there is no wave function collapse. This implies that all possible outcomes of quantum measurements are physically realized in some "world" or universe. In contrast to some other interpretations of quantum mechanics, the evolution of reality as a whole in MWI is rigidly deterministic and local. Many-worlds is also called the relative state formulation or the Everett interpretation, after physicist Hugh Everett, who first proposed it in 1957. Bryce DeWitt popularized the formulation and named it many-worlds in the 1970s.
Mechanics is the area of physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects result in displacements, which are changes of an object's position relative to its environment.
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is presented as being based on just two postulates:
The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.
In physics, gravity (from Latin gravitas 'weight') is a fundamental interaction which causes mutual attraction between all things that have mass. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light.
In quantum mechanics, wave function collapse, also called reduction of the state vector, occurs when a wave function—initially in a superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is called an observation, and is the essence of a measurement in quantum mechanics, which connects the wave function with classical observables such as position and momentum. Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation.
Physical causality is a physical relationship between causes and effects. It is considered to be fundamental to all natural sciences and behavioural sciences, especially physics. Causality is also a topic studied from the perspectives of philosophy, statistics and logic. Causality means that an effect can not occur from a cause that is not in the back (past) light cone of that event. Similarly, a cause can not have an effect outside its front (future) light cone.
The classical limit or correspondence limit is the ability of a physical theory to approximate or "recover" classical mechanics when considered over special values of its parameters. The classical limit is used with physical theories that predict non-classical behavior.
In physics, action at a distance is the concept that an object's motion can be affected by another object without being in physical contact with it; that is, the non-local interaction of objects that are separated in space. Coulomb's law and Newton's law of universal gravitation are based on action at a distance.
In physics, an effective field theory is a type of approximation, or effective theory, for an underlying physical theory, such as a quantum field theory or a statistical mechanics model. An effective field theory includes the appropriate degrees of freedom to describe physical phenomena occurring at a chosen length scale or energy scale, while ignoring substructure and degrees of freedom at shorter distances. Intuitively, one averages over the behavior of the underlying theory at shorter length scales to derive what is hoped to be a simplified model at longer length scales. Effective field theories typically work best when there is a large separation between length scale of interest and the length scale of the underlying dynamics. Effective field theories have found use in particle physics, statistical mechanics, condensed matter physics, general relativity, and hydrodynamics. They simplify calculations, and allow treatment of dissipation and radiation effects.
Modern physics is a branch of physics that developed in the early 20th century and onward or branches greatly influenced by early 20th century physics. Notable branches of modern physics include quantum mechanics, special relativity, and general relativity.
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c. As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at any speed, including faster than light. The foundations of relativistic mechanics are the postulates of special relativity and general relativity. The unification of SR with quantum mechanics is relativistic quantum mechanics, while attempts for that of GR is quantum gravity, an unsolved problem in physics.
Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to a revolution in physics, a shift in the original scientific paradigm: the development of quantum mechanics.
For classical dynamics at relativistic speeds, see relativistic mechanics.
This article will use the Einstein summation convention.
Classical mechanics is a physical theory describing the motion of objects such as projectiles, parts of machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics involved substantial change in the methods and philosophy of physics. The qualifier classical distinguishes this type of mechanics from physics developed after the revolutions in physics of the early 20th century, all of which revealed limitations in classical mechanics.
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.
Physics is a scientific discipline that seeks to construct and experimentally test theories of the physical universe. These theories vary in their scope and can be organized into several distinct branches, which are outlined in this article.
In science, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. A weather map, with the surface temperature described by assigning a number to each point on the map, is an example of a scalar field. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field.
Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum is considered as a superfluid or as a Bose–Einstein condensate (BEC).