This article needs additional citations for verification .(June 2013) |
Part of a series on |
Classical mechanics |
---|
Part of a series on |
Astrodynamics |
---|
Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data.
Modern analytic celestial mechanics started with Isaac Newton's Principia (1687). The name celestial mechanics is more recent than that. Newton wrote that the field should be called "rational mechanics". The term "dynamics" came in a little later with Gottfried Leibniz, and over a century after Newton, Pierre-Simon Laplace introduced the term celestial mechanics. Prior to Kepler, there was little connection between exact, quantitative prediction of planetary positions, using geometrical or numerical techniques, and contemporary discussions of the physical causes of the planets' motion.
Johannes Kepler as the first to closely integrate the predictive geometrical astronomy, which had been dominant from Ptolemy in the 2nd century to Copernicus, with physical concepts to produce a New Astronomy, Based upon Causes, or Celestial Physics in 1609. His work led to the laws of planetary orbits, which he developed using his physical principles and the planetary observations made by Tycho Brahe. Kepler's elliptical model greatly improved the accuracy of predictions of planetary motion, years before Newton developed his law of gravitation in 1686.
Isaac Newton is credited with introducing the idea that the motion of objects in the heavens, such as planets, the Sun, and the Moon, and the motion of objects on the ground, like cannon balls and falling apples, could be described by the same set of physical laws. In this sense he unified celestial and terrestrial dynamics. Using his law of gravity, Newton confirmed Kepler's laws for elliptical orbits by deriving them from the gravitational two-body problem, which Newton included in his epochal Philosophiæ Naturalis Principia Mathematica in 1687.
After Newton, Joseph-Louis Lagrange attempted to solve the three-body problem in 1772, analyzed the stability of planetary orbits, and discovered the existence of the Lagrange points. Lagrange also reformulated the principles of classical mechanics, emphasizing energy more than force, and developing a method to use a single polar coordinate equation to describe any orbit, even those that are parabolic and hyperbolic. This is useful for calculating the behaviour of planets and comets and such (parabolic and hyperbolic orbits are conic section extensions of Kepler's elliptical orbits). More recently, it has also become useful to calculate spacecraft trajectories.
Henri Poincaré published two now classical monographs, "New Methods of Celestial Mechanics" (1892–1899) and "Lectures on Celestial Mechanics" (1905–1910). In them, he successfully applied the results of their research to the problem of the motion of three bodies and studied in detail the behavior of solutions (frequency, stability, asymptotic, and so on). Poincaré showed that the three-body problem is not integrable. In other words, the general solution of the three-body problem can not be expressed in terms of algebraic and transcendental functions through unambiguous coordinates and velocities of the bodies. His work in this area was the first major achievement in celestial mechanics since Isaac Newton. [1]
These monographs include an idea of Poincaré, which later became the basis for mathematical "chaos theory" (see, in particular, the Poincaré recurrence theorem) and the general theory of dynamical systems. He introduced the important concept of bifurcation points and proved the existence of equilibrium figures such as the non-ellipsoids, including ring-shaped and pear-shaped figures, and their stability. For this discovery, Poincaré received the Gold Medal of the Royal Astronomical Society (1900). [2]
Simon Newcomb was a Canadian-American astronomer who revised Peter Andreas Hansen's table of lunar positions. In 1877, assisted by George William Hill, he recalculated all the major astronomical constants. After 1884 he conceived, with A.M.W. Downing, a plan to resolve much international confusion on the subject. By the time he attended a standardisation conference in Paris, France, in May 1886, the international consensus was that all ephemerides should be based on Newcomb's calculations. A further conference as late as 1950 confirmed Newcomb's constants as the international standard.
Albert Einstein explained the anomalous precession of Mercury's perihelion in his 1916 paper The Foundation of the General Theory of Relativity. General relativity led astronomers to recognize that Newtonian mechanics did not provide the highest accuracy.
Celestial motion, without additional forces such as drag forces or the thrust of a rocket, is governed by the reciprocal gravitational acceleration between masses. A generalization is the n-body problem, [3] where a number n of masses are mutually interacting via the gravitational force. Although analytically not integrable in the general case, [4] the integration can be well approximated numerically.
In the case (two-body problem) the configuration is much simpler than for . In this case, the system is fully integrable and exact solutions can be found. [5]
A further simplification is based on the "standard assumptions in astrodynamics", which include that one body, the orbiting body, is much smaller than the other, the central body. This is also often approximately valid.
Perturbation theory comprises mathematical methods that are used to find an approximate solution to a problem which cannot be solved exactly. (It is closely related to methods used in numerical analysis, which are ancient.) The earliest use of modern perturbation theory was to deal with the otherwise unsolvable mathematical problems of celestial mechanics: Newton's solution for the orbit of the Moon, which moves noticeably differently from a simple Keplerian ellipse because of the competing gravitation of the Earth and the Sun.
Perturbation methods start with a simplified form of the original problem, which is carefully chosen to be exactly solvable. In celestial mechanics, this is usually a Keplerian ellipse, which is correct when there are only two gravitating bodies (say, the Earth and the Moon), or a circular orbit, which is only correct in special cases of two-body motion, but is often close enough for practical use.
The solved, but simplified problem is then "perturbed" to make its time-rate-of-change equations for the object's position closer to the values from the real problem, such as including the gravitational attraction of a third, more distant body (the Sun). The slight changes that result from the terms in the equations – which themselves may have been simplified yet again – are used as corrections to the original solution. Because simplifications are made at every step, the corrections are never perfect, but even one cycle of corrections often provides a remarkably better approximate solution to the real problem.
There is no requirement to stop at only one cycle of corrections. A partially corrected solution can be re-used as the new starting point for yet another cycle of perturbations and corrections. In principle, for most problems the recycling and refining of prior solutions to obtain a new generation of better solutions could continue indefinitely, to any desired finite degree of accuracy.
The common difficulty with the method is that the corrections usually progressively make the new solutions very much more complicated, so each cycle is much more difficult to manage than the previous cycle of corrections. Newton is reported to have said, regarding the problem of the Moon's orbit "It causeth my head to ache." [6]
This general procedure – starting with a simplified problem and gradually adding corrections that make the starting point of the corrected problem closer to the real situation – is a widely used mathematical tool in advanced sciences and engineering. It is the natural extension of the "guess, check, and fix" method used anciently with numbers.
This section needs expansion. You can help by adding to it. (September 2023) |
Problems in celestial mechanics are often posed in simplifying reference frames, such as the synodic reference frame applied to the three-body problem, where the origin coincides with the barycenter of the two larger celestial bodies. Other reference frames for n-body simulations include those that place the origin to follow the center of mass of a body, such as the heliocentric and the geocentric reference frames. [7] The choice of reference frame gives rise to many phenomena, including the retrograde motion of superior planets while on a geocentric reference frame.
Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control.
Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including both spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets. Orbital mechanics focuses on spacecraft trajectories, including orbital maneuvers, orbital plane changes, and interplanetary transfers, and is used by mission planners to predict the results of propulsive maneuvers.
General relativity is a more exact theory than Newton's laws for calculating orbits, and it is sometimes necessary to use it for greater accuracy or in high-gravity situations (e.g. orbits near the Sun).In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.
The following outline is provided as an overview and topical guide to space science:
In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle step that breaks the problem into "solvable" and "perturbative" parts. In regular perturbation theory, the solution is expressed as a power series in a small parameter . The first term is the known solution to the solvable problem. Successive terms in the series at higher powers of usually become smaller. An approximate 'perturbation solution' is obtained by truncating the series, often keeping only the first two terms, the solution to the known problem and the 'first order' perturbation correction.
In the Hipparchian, Ptolemaic, and Copernican systems of astronomy, the epicycle was a geometric model used to explain the variations in speed and direction of the apparent motion of the Moon, Sun, and planets. In particular it explained the apparent retrograde motion of the five planets known at the time. Secondarily, it also explained changes in the apparent distances of the planets from the Earth.
The orbital period is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars. It may also refer to the time it takes a satellite orbiting a planet or moon to complete one orbit.
In astronomy and celestial navigation, an ephemeris is a book with tables that gives the trajectory of naturally occurring astronomical objects and artificial satellites in the sky, i.e., the position over time. Historically, positions were given as printed tables of values, given at regular intervals of date and time. The calculation of these tables was one of the first applications of mechanical computers. Modern ephemerides are often provided in electronic form. However, printed ephemerides are still produced, as they are useful when computational devices are not available.
Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control.
The Gaussian gravitational constant is a parameter used in the orbital mechanics of the Solar System. It relates the orbital period to the orbit's semi-major axis and the mass of the orbiting body in Solar masses.
Richard F. Arenstorf was an American mathematician. He discovered a stable orbit between the Earth and the Moon, called an Arenstorf Orbit. It was the basis of the orbit used by the Apollo Program for going to the Moon.
In physics, specifically classical mechanics, the three-body problem is to take the initial positions and velocities of three point masses that orbit each other in space and calculate their subsequent trajectories using Newton's laws of motion and Newton's law of universal gravitation.
In astronomy, perturbation is the complex motion of a massive body subjected to forces other than the gravitational attraction of a single other massive body. The other forces can include a third body, resistance, as from an atmosphere, and the off-center attraction of an oblate or otherwise misshapen body.
Lunar theory attempts to account for the motions of the Moon. There are many small variations in the Moon's motion, and many attempts have been made to account for them. After centuries of being problematic, lunar motion can now be modeled to a very high degree of accuracy.
In astronomy, and in particular in astrodynamics, the osculating orbit of an object in space at a given moment in time is the gravitational Kepler orbit that it would have around its central body if perturbations were absent. That is, it is the orbit that coincides with the current orbital state vectors.
The semi-analytic planetary theory VSOP is a mathematical model describing long-term changes in the orbits of the planets Mercury to Neptune. The earliest modern scientific model considered only the gravitational attraction between the Sun and each planet, with the resulting orbits being unvarying Keplerian ellipses. In reality, all the planets exert slight forces on each other, causing slow changes in the shape and orientation of these ellipses. Increasingly complex analytical models have been made of these deviations, as well as efficient and accurate numerical approximation methods.
In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.
In physics, the n-body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. Solving this problem has been motivated by the desire to understand the motions of the Sun, Moon, planets, and visible stars. In the 20th century, understanding the dynamics of globular cluster star systems became an important n-body problem. The n-body problem in general relativity is considerably more difficult to solve due to additional factors like time and space distortions.
In astronomy, planetary mass is a measure of the mass of a planet-like astronomical object. Within the Solar System, planets are usually measured in the astronomical system of units, where the unit of mass is the solar mass (M☉), the mass of the Sun. In the study of extrasolar planets, the unit of measure is typically the mass of Jupiter (MJ) for large gas giant planets, and the mass of Earth (ME) for smaller rocky terrestrial planets.
This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.
Historical models of the Solar System first appeared during prehistoric periods and remain updated to this day.. The models of the Solar System throughout history were first represented in the early form of cave markings and drawings, calendars and astronomical symbols. Then books and written records became the main source of information that expressed the way the people of the time thought of the Solar System.
Weak stability boundary (WSB), including low-energy transfer, is a concept introduced by Edward Belbruno in 1987. The concept explained how a spacecraft could change orbits using very little fuel.
Research
Artwork
Course notes
Associations
Simulations