WikiMili The Free Encyclopedia

In physics, an **orbit** is the gravitationally curved trajectory of an object,^{ [1] } such as the trajectory of a planet around a star or a natural satellite around a planet. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the central mass being orbited at a focal point of the ellipse,^{ [2] } as described by Kepler's laws of planetary motion.

**Physics** is the natural science that studies matter, its motion, and behavior through space and time, and that studies the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, and its main goal is to understand how the universe behaves.

A **trajectory** or **flight path** is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete trajectory is defined by position and momentum, simultaneously. Trajectory in quantum mechanics is not defined due to Heisenberg uncertainty principle that position and momentum can not be measured simultaneously.

A **planet** is an astronomical body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and has cleared its neighbouring region of planetesimals.

- History
- Planetary orbits
- Understanding orbits
- Newton's laws of motion
- Newton's law of gravitation and laws of motion for two-body problems
- Defining gravitational potential energy
- Orbital energies and orbit shapes
- Kepler's laws
- Limitations of Newton's law of gravitation
- Approaches to many-body problems
- Newtonian analysis of orbital motion
- Relativistic orbital motion
- Orbital planes
- Orbital period
- Specifying orbits
- Orbital perturbations
- Radial, prograde and transverse perturbations
- Orbital decay
- Oblateness
- Multiple gravitating bodies
- Light radiation and stellar wind
- Strange orbits
- Astrodynamics
- Earth orbits
- Scaling in gravity
- Patents
- Tidal locking
- See also
- Notes
- References
- Further reading
- External links

For most situations, orbital motion is adequately approximated by Newtonian mechanics, which explains gravity as a force obeying an inverse-square law.^{ [3] } However, Albert Einstein's general theory of relativity, which accounts for gravity as due to curvature of spacetime, with orbits following geodesics, provides a more accurate calculation and understanding of the exact mechanics of orbital motion.

**Newton's law of universal gravitation** states that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. This is a general physical law derived from empirical observations by what Isaac Newton called inductive reasoning. It is a part of classical mechanics and was formulated in Newton's work *Philosophiæ Naturalis Principia Mathematica*, first published on 5 July 1687. When Newton presented Book 1 of the unpublished text in April 1686 to the Royal Society, Robert Hooke made a claim that Newton had obtained the inverse square law from him.

The **inverse-square law**, in physics, is any physical law stating that a specified physical quantity or intensity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cause for this can be understood as geometric dilution corresponding to point-source radiation into three-dimensional space.

**Albert Einstein** was a German-born theoretical physicist who developed the theory of relativity, one of the two pillars of modern physics. His work is also known for its influence on the philosophy of science. He is best known to the general public for his mass–energy equivalence formula *E* = *mc*^{2}, which has been dubbed "the world's most famous equation". He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect", a pivotal step in the development of quantum theory.

Part of a series on |

Spaceflight |
---|

History |

Applications |

Spacecraft |

Launch |

Destinations |

Space agencies |

Private spaceflight |

Historically, the apparent motions of the planets were described by European and Arabic philosophers using the idea of celestial spheres. This model posited the existence of perfect moving spheres or rings to which the stars and planets were attached. It assumed the heavens were fixed apart from the motion of the spheres, and was developed without any understanding of gravity. After the planets' motions were more accurately measured, theoretical mechanisms such as deferent and epicycles were added. Although the model was capable of reasonably accurately predicting the planets' positions in the sky, more and more epicycles were required as the measurements became more accurate, hence the model became increasingly unwieldy. Originally geocentric, it was modified by Copernicus to place the Sun at the centre to help simplify the model. The model was further challenged during the 16th century, as comets were observed traversing the spheres.^{ [4] }^{ [5] }

The **celestial spheres**, or **celestial orbs**, were the fundamental entities of the cosmological models developed by Plato, Eudoxus, Aristotle, Ptolemy, Copernicus, and others. In these celestial models, the apparent motions of the fixed stars and planets are accounted for by treating them as embedded in rotating spheres made of an aetherial, transparent fifth element (quintessence), like jewels set in orbs. Since it was believed that the fixed stars did not change their positions relative to one another, it was argued that they must be on the surface of a single starry sphere.

In the Hipparchian and Ptolemaic systems of astronomy, the **epicycle** was a geometric model used to explain the variations in speed and direction of the apparent motion of the Moon, Sun, and planets. In particular it explained the apparent retrograde motion of the five planets known at the time. Secondarily, it also explained changes in the apparent distances of the planets from the Earth.

In astronomy, the **geocentric model** is a superseded description of the Universe with Earth at the center. Under the geocentric model, the Sun, Moon, stars, and planets all orbited Earth. The geocentric model was the predominant description of the cosmos in many ancient civilizations, such as those of Aristotle in Classical Greece and Ptolemy in Roman Egypt.

The basis for the modern understanding of orbits was first formulated by Johannes Kepler whose results are summarised in his three laws of planetary motion. First, he found that the orbits of the planets in our Solar System are elliptical, not circular (or epicyclic), as had previously been believed, and that the Sun is not located at the center of the orbits, but rather at one focus.^{ [6] } Second, he found that the orbital speed of each planet is not constant, as had previously been thought, but rather that the speed depends on the planet's distance from the Sun. Third, Kepler found a universal relationship between the orbital properties of all the planets orbiting the Sun. For the planets, the cubes of their distances from the Sun are proportional to the squares of their orbital periods. Jupiter and Venus, for example, are respectively about 5.2 and 0.723 AU distant from the Sun, their orbital periods respectively about 11.86 and 0.615 years. The proportionality is seen by the fact that the ratio for Jupiter, 5.2^{3}/11.86^{2}, is practically equal to that for Venus, 0.723^{3}/0.615^{2}, in accord with the relationship. Idealised orbits meeting these rules are known as Kepler orbits.

**Johannes Kepler** was a German astronomer, mathematician, and astrologer. He is a key figure in the 17th-century scientific revolution, best known for his laws of planetary motion, and his books *Astronomia nova*, *Harmonices Mundi*, and *Epitome Astronomiae Copernicanae*. These works also provided one of the foundations for Newton's theory of universal gravitation.

The **Solar System** is the gravitationally bound planetary system of the Sun and the objects that orbit it, either directly or indirectly. Of the objects that orbit the Sun directly, the largest are the eight planets, with the remainder being smaller objects, such as the five dwarf planets and small Solar System bodies. Of the objects that orbit the Sun indirectly—the moons—two are larger than the smallest planet, Mercury.

A **circle** is a simple closed shape. It is the set of all points in a plane that are at a given distance from a given point, the centre; equivalently it is the curve traced out by a point that moves in a plane so that its distance from a given point is constant. The distance between any of the points and the centre is called the radius. This article is about circles in Euclidean geometry, and, in particular, the Euclidean plane, except where otherwise noted.

Isaac Newton demonstrated that Kepler's laws were derivable from his theory of gravitation and that, in general, the orbits of bodies subject to gravity were conic sections (this assumes that the force of gravity propagates instantaneously). Newton showed that, for a pair of bodies, the orbits' sizes are in inverse proportion to their masses, and that those bodies orbit their common center of mass. Where one body is much more massive than the other (as is the case of an artificial satellite orbiting a planet), it is a convenient approximation to take the center of mass as coinciding with the center of the more massive body.

**Sir Isaac Newton** was an English mathematician, physicist, astronomer, theologian, and author who is widely recognised as one of the most influential scientists of all time, and a key figure in the scientific revolution. His book *Philosophiæ Naturalis Principia Mathematica*, first published in 1687, laid the foundations of classical mechanics. Newton also made seminal contributions to optics, and shares credit with Gottfried Wilhelm Leibniz for developing the infinitesimal calculus.

In mathematics, a **conic section** is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though historically it was sometimes called a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

**Mass** is both a property of a physical body and a measure of its resistance to acceleration when a net force is applied. An object's mass also determines the strength of its gravitational attraction to other bodies.

Advances in Newtonian mechanics were then used to explore variations from the simple assumptions behind Kepler orbits, such as the perturbations due to other bodies, or the impact of spheroidal rather than spherical bodies. Lagrange (1736–1813) developed a new approach to Newtonian mechanics emphasizing energy more than force, and made progress on the three body problem, discovering the Lagrangian points. In a dramatic vindication of classical mechanics, in 1846 Urbain Le Verrier was able to predict the position of Neptune based on unexplained perturbations in the orbit of Uranus.

**Lagrangian mechanics** is a reformulation of classical mechanics, introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in 1788.

In physics and classical mechanics, the **three-body problem** is the problem of taking the initial positions and velocities of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation. The three-body problem is a special case of the n-body problem. Unlike two-body problems, no closed-form solution exists for all sets of initial conditions, and numerical methods are generally required.

**Urbain Jean Joseph Le Verrier** FRS (FOR) HFRSE was a French astronomer and mathematician who specialized in celestial mechanics and is best known for predicting the existence and position of Neptune using only mathematics. The calculations were made to explain discrepancies with Uranus's orbit and the laws of Kepler and Newton. Le Verrier sent the coordinates to Johann Gottfried Galle in Berlin, asking him to verify. Galle found Neptune in the same night he received Le Verrier's letter, within 1° of the predicted position. The discovery of Neptune is widely regarded as a dramatic validation of celestial mechanics, and is one of the most remarkable moments of 19th-century science.

Albert Einstein (1879-1955) in his 1916 paper *The Foundation of the General Theory of Relativity* explained that gravity was due to curvature of space-time and removed Newton's assumption that changes propagate instantaneously. This led astronomers to recognize that Newtonian mechanics did not provide the highest accuracy in understanding orbits. In relativity theory, orbits follow geodesic trajectories which are usually approximated very well by the Newtonian predictions (except where there are very strong gravity fields and very high speeds) but the differences are measurable. Essentially all the experimental evidence that can distinguish between the theories agrees with relativity theory to within experimental measurement accuracy. The original vindication of general relativity is that it was able to account for the remaining unexplained amount in precession of Mercury's perihelion first noted by Le Verrier. However, Newton's solution is still used for most short term purposes since it is significantly easier to use and sufficiently accurate.

Within a planetary system, planets, dwarf planets, asteroids and other minor planets, comets, and space debris orbit the system's barycenter in elliptical orbits. A comet in a parabolic or hyperbolic orbit about a barycenter is not gravitationally bound to the star and therefore is not considered part of the star's planetary system. Bodies which are gravitationally bound to one of the planets in a planetary system, either natural or artificial satellites, follow orbits about a barycenter near or within that planet.

Owing to mutual gravitational perturbations, the eccentricities of the planetary orbits vary over time. Mercury, the smallest planet in the Solar System, has the most eccentric orbit. At the present epoch, Mars has the next largest eccentricity while the smallest orbital eccentricities are seen with Venus and Neptune.

As two objects orbit each other, the periapsis is that point at which the two objects are closest to each other and the apoapsis is that point at which they are the farthest. (More specific terms are used for specific bodies. For example, *perigee* and *apogee* are the lowest and highest parts of an orbit around Earth, while *perihelion* and *aphelion* are the closest and farthest points of an orbit around the Sun.)

In the case of planets orbiting a star, the mass of the star and all its satellites are calculated to be at a single point called the barycenter. The paths of all the star's satellites are elliptical orbits about that barycenter. Each satellite in that system will have its own elliptical orbit with the barycenter at one focal point of that ellipse. At any point along its orbit, any satellite will have a certain value of kinetic and potential energy with respect to the barycenter, and that energy is a constant value at every point along its orbit. As a result, as a planet approaches periapsis, the planet will increase in speed as its potential energy decreases; as a planet approaches apoapsis, its velocity will decrease as its potential energy increases.

There are a few common ways of understanding orbits:

- A force, such as gravity, pulls an object into a curved path as it attempts to fly off in a straight line.
- As the object is pulled toward the massive body, it falls toward that body. However, if it has enough tangential velocity it will not fall into the body but will instead continue to follow the curved trajectory caused by that body indefinitely. The object is then said to be orbiting the body.

As an illustration of an orbit around a planet, the Newton's cannonball model may prove useful (see image below). This is a 'thought experiment', in which a cannon on top of a tall mountain is able to fire a cannonball horizontally at any chosen muzzle speed. The effects of air friction on the cannonball are ignored (or perhaps the mountain is high enough that the cannon is above the Earth's atmosphere, which is the same thing).^{ [7] }

If the cannon fires its ball with a low initial speed, the trajectory of the ball curves downward and hits the ground (A). As the firing speed is increased, the cannonball hits the ground farther (B) away from the cannon, because while the ball is still falling towards the ground, the ground is increasingly curving away from it (see first point, above). All these motions are actually "orbits" in a technical sense – they are describing a portion of an elliptical path around the center of gravity – but the orbits are interrupted by striking the Earth.

If the cannonball is fired with sufficient speed, the ground curves away from the ball at least as much as the ball falls – so the ball never strikes the ground. It is now in what could be called a non-interrupted, or circumnavigating, orbit. For any specific combination of height above the center of gravity and mass of the planet, there is one specific firing speed (unaffected by the mass of the ball, which is assumed to be very small relative to the Earth's mass) that produces a circular orbit, as shown in (C).

As the firing speed is increased beyond this, non-interrupted elliptic orbits are produced; one is shown in (D). If the initial firing is above the surface of the Earth as shown, there will also be non-interrupted elliptical orbits at slower firing speed; these will come closest to the Earth at the point half an orbit beyond, and directly opposite the firing point, below the circular orbit.

At a specific horizontal firing speed called escape velocity, dependent on the mass of the planet, an open orbit (E) is achieved that has a parabolic path. At even greater speeds the object will follow a range of hyperbolic trajectories. In a practical sense, both of these trajectory types mean the object is "breaking free" of the planet's gravity, and "going off into space" never to return.

The velocity relationship of two moving objects with mass can thus be considered in four practical classes, with subtypes:

*No orbit**Suborbital trajectories*- Range of interrupted elliptical paths

*Orbital trajectories (or simply "orbits")*- Range of elliptical paths with closest point opposite firing point
- Circular path
- Range of elliptical paths with closest point at firing point

*Open (or escape) trajectories*- Parabolic paths
- Hyperbolic paths

It is worth noting that orbital rockets are launched vertically at first to lift the rocket above the atmosphere (which causes frictional drag), and then slowly pitch over and finish firing the rocket engine parallel to the atmosphere to achieve orbit speed.

Once in orbit, their speed keeps them in orbit above the atmosphere. If e.g., an elliptical orbit dips into dense air, the object will lose speed and re-enter (i.e. fall). Occasionally a space craft will intentionally intercept the atmosphere, in an act commonly referred to as an aerobraking maneuver

In most situations relativistic effects can be neglected, and Newton's laws give a sufficiently accurate description of motion. The acceleration of a body is equal to the sum of the forces acting on it, divided by its mass, and the gravitational force acting on a body is proportional to the product of the masses of the two attracting bodies and decreases inversely with the square of the distance between them. To this Newtonian approximation, for a system of two point masses or spherical bodies, only influenced by their mutual gravitation (called a two-body problem), their trajectories can be exactly calculated. If the heavier body is much more massive than the smaller, as in the case of a satellite or small moon orbiting a planet or for the Earth orbiting the Sun, it is accurate enough and convenient to describe the motion in terms of a coordinate system that is centered on the heavier body, and we say that the lighter body is in orbit around the heavier. For the case where the masses of two bodies are comparable, an exact Newtonian solution is still sufficient and can be had by placing the coordinate system at the center of mass of the system.

Energy is associated with gravitational fields. A stationary body far from another can do external work if it is pulled towards it, and therefore has gravitational * potential energy *. Since work is required to separate two bodies against the pull of gravity, their gravitational potential energy increases as they are separated, and decreases as they approach one another. For point masses the gravitational energy decreases to zero as they approach zero separation. It is convenient and conventional to assign the potential energy as having zero value when they are an infinite distance apart, and hence it has a negative value (since it decreases from zero) for smaller finite distances.

When only two gravitational bodies interact, their orbits follow a conic section. The orbit can be open (implying the object never returns) or closed (returning). Which it is depends on the total energy (kinetic + potential energy) of the system. In the case of an open orbit, the speed at any position of the orbit is at least the escape velocity for that position, in the case of a closed orbit, the speed is always less than the escape velocity. Since the kinetic energy is never negative, if the common convention is adopted of taking the potential energy as zero at infinite separation, the bound orbits will have negative total energy, the parabolic trajectories zero total energy, and hyperbolic orbits positive total energy.

An open orbit will have a parabolic shape if it has velocity of exactly the escape velocity at that point in its trajectory, and it will have the shape of a hyperbola when its velocity is greater than the escape velocity. When bodies with escape velocity or greater approach each other, they will briefly curve around each other at the time of their closest approach, and then separate, forever.

All closed orbits have the shape of an ellipse. A circular orbit is a special case, wherein the foci of the ellipse coincide. The point where the orbiting body is closest to Earth is called the perigee, and is called the periapsis (less properly, "perifocus" or "pericentron") when the orbit is about a body other than Earth. The point where the satellite is farthest from Earth is called the apogee, apoapsis, or sometimes apifocus or apocentron. A line drawn from periapsis to apoapsis is the ** line-of-apsides **. This is the major axis of the ellipse, the line through its longest part.

Bodies following closed orbits repeat their paths with a certain time called the period. This motion is described by the empirical laws of Kepler, which can be mathematically derived from Newton's laws. These can be formulated as follows:

- The orbit of a planet around the Sun is an ellipse, with the Sun in one of the focal points of that ellipse. [This focal point is actually the barycenter of the Sun-planet system; for simplicity this explanation assumes the Sun's mass is infinitely larger than that planet's.] The planet's orbit lies in a plane, called the
**orbital plane**. The point on the orbit closest to the attracting body is the periapsis. The point farthest from the attracting body is called the apoapsis. There are also specific terms for orbits about particular bodies; things orbiting the Sun have a perihelion and aphelion, things orbiting the Earth have a perigee and apogee, and things orbiting the Moon have a perilune and apolune (or periselene and aposelene respectively). An orbit around any star, not just the Sun, has a periastron and an apastron. - As the planet moves in its orbit, the line from the Sun to planet sweeps a constant area of the orbital plane for a given period of time, regardless of which part of its orbit the planet traces during that period of time. This means that the planet moves faster near its perihelion than near its aphelion, because at the smaller distance it needs to trace a greater arc to cover the same area. This law is usually stated as "equal areas in equal time."
- For a given orbit, the ratio of the cube of its semi-major axis to the square of its period is constant.

Note that while bound orbits of a point mass or a spherical body with a Newtonian gravitational field are closed ellipses, which repeat the same path exactly and indefinitely, any non-spherical or non-Newtonian effects (such as caused by the slight oblateness of the Earth, or by relativistic effects, thereby changing the gravitational field's behavior with distance) will cause the orbit's shape to depart from the closed ellipses characteristic of Newtonian two-body motion. The two-body solutions were published by Newton in Principia in 1687. In 1912, Karl Fritiof Sundman developed a converging infinite series that solves the three-body problem; however, it converges too slowly to be of much use. Except for special cases like the Lagrangian points, no method is known to solve the equations of motion for a system with four or more bodies.

Rather than an exact closed form solution, orbits with many bodies can be approximated with arbitrarily high accuracy. These approximations take two forms:

- One form takes the pure elliptic motion as a basis, and adds perturbation terms to account for the gravitational influence of multiple bodies. This is convenient for calculating the positions of astronomical bodies. The equations of motion of the moons, planets and other bodies are known with great accuracy, and are used to generate tables for celestial navigation. Still, there are secular phenomena that have to be dealt with by post-Newtonian methods.
- The differential equation form is used for scientific or mission-planning purposes. According to Newton's laws, the sum of all the forces acting on a body will equal the mass of the body times its acceleration (
*F = ma*). Therefore accelerations can be expressed in terms of positions. The perturbation terms are much easier to describe in this form. Predicting subsequent positions and velocities from initial values of position and velocity corresponds to solving an initial value problem. Numerical methods calculate the positions and velocities of the objects a short time in the future, then repeat the calculation ad nauseam. However, tiny arithmetic errors from the limited accuracy of a computer's math are cumulative, which limits the accuracy of this approach.

Differential simulations with large numbers of objects perform the calculations in a hierarchical pairwise fashion between centers of mass. Using this scheme, galaxies, star clusters and other large assemblages of objects have been simulated.^{[ citation needed ]}

*(See also Kepler orbit, orbit equation and Kepler's first law.*)

The Earth follows an ellipse round the sun. But unlike the ellipse followed by a pendulum or an object attached to a spring, the sun is at a focal point of the ellipse and not at its centre.

The following derivation applies to such an elliptical orbit. We start only with the Newtonian law of gravitation stating that the gravitational acceleration towards the central body is related to the inverse of the square of the distance between them, namely

- eq 1.

where *F*_{2} is the force acting on the mass *m*_{2} caused by the gravitational attraction mass *m*_{1} has for *m*_{2}, *G* is the universal gravitational constant, and *r* is the distance between the two masses centers.

From Newton's Second Law, the summation of the forces acting on *m*_{2} related to that bodies acceleration:

- eq 2.

where *A*_{2} is the acceleration of *m*_{2} caused by the force of gravitational attraction *F*_{2} of *m*_{1} acting on *m*_{2}.

Combining Eq 1 and 2:

Solving for the acceleration, *A*_{2}:

where is the standard gravitational parameter, in this case . It is understood that the system being described is *m*_{2}, hence the subscripts can be dropped.

We assume that the central body is massive enough that it can be considered to be stationary and we ignore the more subtle effects of general relativity.

When a pendulum or an object attached to a spring swings in an ellipse, the inward acceleration/force is proportional to the distance Due to the way vectors add, the component of the force in the or in the directions are also proportionate to the respective components of the distances, . Hence, the entire analysis can be done separately in these dimensions. This results in the harmonic parabolic equations and of the ellipse. In contrast, with the decreasing relationship , the dimensions cannot be separated.^{[ citation needed ]}

The location of the orbiting object at the current time is located in the plane using Vector calculus in polar coordinates both with the standard Euclidean basis and with the polar basis with the origin coinciding with the center of force. Let be the distance between the object and the center and be the angle it has rotated. Let and be the standard Euclidean bases and let and be the radial and transverse polar basis with the first being the unit vector pointing from the central body to the current location of the orbiting object and the second being the orthogonal unit vector pointing in the direction that the orbiting object would travel if orbiting in a counter clockwise circle. Then the vector to the orbiting object is

We use and to denote the standard derivatives of how this distance and angle change over time. We take the derivative of a vector to see how it changes over time by subtracting its location at time from that at time and dividing by . The result is also a vector. Because our basis vector moves as the object orbits, we start by differentiating it. From time to , the vector keeps its beginning at the origin and rotates from angle to which moves its head a distance in the perpendicular direction giving a derivative of .

We can now find the velocity and acceleration of our orbiting object.

The coefficients of and give the accelerations in the radial and transverse directions. As said, Newton gives this first due to gravity is and the second is zero.

**(1)**

**(2)**

Equation (2) can be rearranged using integration by parts.

We can multiply through by because it is not zero unless the orbiting object crashes. Then having the derivative be zero gives that the function is a constant.

**(3)**

which is actually the theoretical proof of Kepler's second law (A line joining a planet and the Sun sweeps out equal areas during equal intervals of time). The constant of integration, *h*, is the angular momentum per unit mass.

In order to get an equation for the orbit from equation (1), we need to eliminate time.^{ [8] } (See also Binet equation.) In polar coordinates, this would express the distance of the orbiting object from the center as a function of its angle . However, it is easier to introduce the auxiliary variable and to express as a function of . Derivatives of with respect to time may be rewritten as derivatives of with respect to angle.

- (reworking (3))

Plugging these into (1) gives

So for the gravitational force – or, more generally, for *any* inverse square force law – the right hand side of the equation becomes a constant and the equation is seen to be the harmonic equation (up to a shift of origin of the dependent variable). The solution is:

where *A* and *θ*_{0} are arbitrary constants. This resulting equation of the orbit of the object is that of an ellipse in Polar form relative to one of the focal points. This is put into a more standard form by letting be the eccentricity, letting be the semi-major axis. Finally, letting so the long axis of the ellipse is along the positive *x* coordinate.

The above classical (Newtonian) analysis of orbital mechanics assumes that the more subtle effects of general relativity, such as frame dragging and gravitational time dilation are negligible. Relativistic effects cease to be negligible when near very massive bodies (as with the precession of Mercury's orbit about the Sun), or when extreme precision is needed (as with calculations of the orbital elements and time signal references for GPS satellites.^{ [9] })

The analysis so far has been two dimensional; it turns out that an unperturbed orbit is two-dimensional in a plane fixed in space, and thus the extension to three dimensions requires simply rotating the two-dimensional plane into the required angle relative to the poles of the planetary body involved.

The rotation to do this in three dimensions requires three numbers to uniquely determine; traditionally these are expressed as three angles.

The orbital period is simply how long an orbiting body takes to complete one orbit.

Six parameters are required to specify a Keplerian orbit about a body. For example, the three numbers that specify the body's initial position, and the three values that specify its velocity will define a unique orbit that can be calculated forwards (or backwards) in time. However, traditionally the parameters used are slightly different.

The traditionally used set of orbital elements is called the set of Keplerian elements, after Johannes Kepler and his laws. The Keplerian elements are six:

- Inclination (
*i*) - Longitude of the ascending node (Ω)
- Argument of periapsis (ω)
- Eccentricity (
*e*) - Semimajor axis (
*a*) - Mean anomaly at epoch (
*M*_{0}).

In principle once the orbital elements are known for a body, its position can be calculated forward and backwards indefinitely in time. However, in practice, orbits are affected or perturbed, by other forces than simple gravity from an assumed point source (see the next section), and thus the orbital elements change over time.

An orbital perturbation is when a force or impulse which is much smaller than the overall force or average impulse of the main gravitating body and which is external to the two orbiting bodies causes an acceleration, which changes the parameters of the orbit over time.

A small radial impulse given to a body in orbit changes the eccentricity, but not the orbital period (to first order). A prograde or retrograde impulse (i.e. an impulse applied along the orbital motion) changes both the eccentricity and the orbital period. Notably, a prograde impulse at periapsis raises the altitude at apoapsis, and vice versa, and a retrograde impulse does the opposite. A transverse impulse (out of the orbital plane) causes rotation of the orbital plane without changing the period or eccentricity. In all instances, a closed orbit will still intersect the perturbation point.

If an orbit is about a planetary body with significant atmosphere, its orbit can decay because of drag. Particularly at each periapsis, the object experiences atmospheric drag, losing energy. Each time, the orbit grows less eccentric (more circular) because the object loses kinetic energy precisely when that energy is at its maximum. This is similar to the effect of slowing a pendulum at its lowest point; the highest point of the pendulum's swing becomes lower. With each successive slowing more of the orbit's path is affected by the atmosphere and the effect becomes more pronounced. Eventually, the effect becomes so great that the maximum kinetic energy is not enough to return the orbit above the limits of the atmospheric drag effect. When this happens the body will rapidly spiral down and intersect the central body.

The bounds of an atmosphere vary wildly. During a solar maximum, the Earth's atmosphere causes drag up to a hundred kilometres higher than during a solar minimum.

Some satellites with long conductive tethers can also experience orbital decay because of electromagnetic drag from the Earth's magnetic field. As the wire cuts the magnetic field it acts as a generator, moving electrons from one end to the other. The orbital energy is converted to heat in the wire.

Orbits can be artificially influenced through the use of rocket engines which change the kinetic energy of the body at some point in its path. This is the conversion of chemical or electrical energy to kinetic energy. In this way changes in the orbit shape or orientation can be facilitated.

Another method of artificially influencing an orbit is through the use of solar sails or magnetic sails. These forms of propulsion require no propellant or energy input other than that of the Sun, and so can be used indefinitely. See statite for one such proposed use.

Orbital decay can occur due to tidal forces for objects below the synchronous orbit for the body they're orbiting. The gravity of the orbiting object raises tidal bulges in the primary, and since below the synchronous orbit the orbiting object is moving faster than the body's surface the bulges lag a short angle behind it. The gravity of the bulges is slightly off of the primary-satellite axis and thus has a component along the satellite's motion. The near bulge slows the object more than the far bulge speeds it up, and as a result the orbit decays. Conversely, the gravity of the satellite on the bulges applies torque on the primary and speeds up its rotation. Artificial satellites are too small to have an appreciable tidal effect on the planets they orbit, but several moons in the Solar System are undergoing orbital decay by this mechanism. Mars' innermost moon Phobos is a prime example, and is expected to either impact Mars' surface or break up into a ring within 50 million years.

Orbits can decay via the emission of gravitational waves. This mechanism is extremely weak for most stellar objects, only becoming significant in cases where there is a combination of extreme mass and extreme acceleration, such as with black holes or neutron stars that are orbiting each other closely.

The standard analysis of orbiting bodies assumes that all bodies consist of uniform spheres, or more generally, concentric shells each of uniform density. It can be shown that such bodies are gravitationally equivalent to point sources.

However, in the real world, many bodies rotate, and this introduces oblateness and distorts the gravity field, and gives a quadrupole moment to the gravitational field which is significant at distances comparable to the radius of the body. In the general case, the gravitational potential of a rotating body such as, e.g., a planet is usually expanded in multipoles accounting for the departures of it from spherical symmetry. From the point of view of satellite dynamics, of particular relevance are the so-called even zonal harmonic coefficients, or even zonals, since they induce secular orbital perturbations which are cumulative over time spans longer than the orbital period.^{ [10] }^{ [11] }^{ [12] } They do depend on the orientation of the body's symmetry axis in the space, affecting, in general, the whole orbit, with the exception of the semimajor axis.

The effects of other gravitating bodies can be significant. For example, the orbit of the Moon cannot be accurately described without allowing for the action of the Sun's gravity as well as the Earth's. One approximate result is that bodies will usually have reasonably stable orbits around a heavier planet or moon, in spite of these perturbations, provided they are orbiting well within the heavier body's Hill sphere.

When there are more than two gravitating bodies it is referred to as an n-body problem. Most n-body problems have no closed form solution, although some special cases have been formulated.

For smaller bodies particularly, light and stellar wind can cause significant perturbations to the attitude and direction of motion of the body, and over time can be significant. Of the planetary bodies, the motion of asteroids is particularly affected over large periods when the asteroids are rotating relative to the Sun.

Mathematicians have discovered that it is possible in principle to have multiple bodies in non-elliptical orbits that repeat periodically, although most such orbits are not stable regarding small perturbations in mass, position, or velocity. However, some special stable cases have been identified, including a planar figure-eight orbit occupied by three moving bodies. Further studies have discovered that nonplanar orbits are also possible, including one involving 12 masses moving in 4 roughly circular, interlocking orbits topologically equivalent to the edges of a cuboctahedron.^{ [13] }

Finding such orbits naturally occurring in the universe is thought to be extremely unlikely, because of the improbability of the required conditions occurring by chance.^{ [13] }

**Orbital mechanics** or **astrodynamics** is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and Newton's law of universal gravitation. It is a core discipline within space mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets. Orbital mechanics focuses on spacecraft trajectories, including orbital maneuvers, orbit plane changes, and interplanetary transfers, and is used by mission planners to predict the results of propulsive maneuvers. General relativity is a more exact theory than Newton's laws for calculating orbits, and is sometimes necessary for greater accuracy or in high-gravity situations (such as orbits close to the Sun).

- Low Earth orbit (LEO): Geocentric orbits with altitudes up to 2,000 km (0–1,240 miles).
^{ [14] } - Medium Earth orbit (MEO): Geocentric orbits ranging in altitude from 2,000 km (1,240 miles) to just below geosynchronous orbit at 35,786 kilometers (22,236 mi). Also known as an intermediate circular orbit. These are "most commonly at 20,200 kilometers (12,600 mi), or 20,650 kilometers (12,830 mi), with an orbital period of 12 hours."
^{ [15] } - Both geosynchronous orbit (GSO) and geostationary orbit (GEO) are orbits around Earth matching Earth's sidereal rotation period. All geosynchronous and geostationary orbits have a semi-major axis of 42,164 km (26,199 mi).
^{ [16] }All geostationary orbits are also geosynchronous, but not all geosynchronous orbits are geostationary. A geostationary orbit stays exactly above the equator, whereas a geosynchronous orbit may swing north and south to cover more of the Earth's surface. Both complete one full orbit of Earth per sidereal day (relative to the stars, not the Sun). - High Earth orbit: Geocentric orbits above the altitude of geosynchronous orbit 35,786 km (22,240 miles).
^{ [15] }

The gravitational constant *G* has been calculated as:

- (6.6742 ± 0.001) × 10
^{−11}(kg/m^{3})^{−1}s^{−2}.

Thus the constant has dimension density^{−1} time^{−2}. This corresponds to the following properties.

Scaling of distances (including sizes of bodies, while keeping the densities the same) gives similar orbits without scaling the time: if for example distances are halved, masses are divided by 8, gravitational forces by 16 and gravitational accelerations by 2. Hence velocities are halved and orbital periods remain the same. Similarly, when an object is dropped from a tower, the time it takes to fall to the ground remains the same with a scale model of the tower on a scale model of the Earth.

Scaling of distances while keeping the masses the same (in the case of point masses, or by reducing the densities) gives similar orbits; if distances are multiplied by 4, gravitational forces and accelerations are divided by 16, velocities are halved and orbital periods are multiplied by 8.

When all densities are multiplied by 4, orbits are the same; gravitational forces are multiplied by 16 and accelerations by 4, velocities are doubled and orbital periods are halved.

When all densities are multiplied by 4, and all sizes are halved, orbits are similar; masses are divided by 2, gravitational forces are the same, gravitational accelerations are doubled. Hence velocities are the same and orbital periods are halved.

In all these cases of scaling. if densities are multiplied by 4, times are halved; if velocities are doubled, forces are multiplied by 16.

These properties are illustrated in the formula (derived from the formula for the orbital period)

for an elliptical orbit with semi-major axis *a*, of a small body around a spherical body with radius *r* and average density *ρ*, where *T* is the orbital period. See also Kepler's Third Law.

The application of certain orbits or orbital maneuvers to specific useful purposes have been the subject of patents.^{ [17] }

Some bodies are tidally locked with other bodies, meaning that one side of the celestial body is permanently facing its host object. This is the case for Earth-Moon and Pluto-Charon system.

- Ephemeris is a compilation of positions of naturally occurring astronomical objects as well as artificial satellites in the sky at a given time or times.
- Free drift
- Klemperer rosette
- List of orbits
- Molniya orbit
- Orbital spaceflight
- Perifocal coordinate system
- Polar Orbits
- Radial trajectory
- Rosetta (orbit)
- VSOP (planets)

- ↑ Orbital periods and speeds are calculated using the relations 4π
^{2}*R*^{2}=*T*^{2}*GM*and*V*^{2}*R*=*GM*, where*R*= radius of orbit in metres,*T*= orbital period in seconds,*V*= orbital speed in m/s,*G*= gravitational constant ≈ 6.673×10^{−11}Nm^{2}/kg^{2},*M*= mass of Earth ≈ 5.98×10^{24}kg. - ↑ Approximately 8.6 times when the Moon is nearest (363,104 km ÷ 42,164 km) to 9.6 times when the Moon is farthest (405,696 km ÷ 42,164 km).

In astronomy, **Kepler's laws of planetary motion** are three scientific laws describing the motion of planets around the Sun.

In physics, **equations of motion** are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behaviour of a physical system as a set of mathematical functions in terms of dynamic variables: normally spatial coordinates and time are used, but others are also possible, such as momentum components and time. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

**Kinematics** is a branch of classical mechanics that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause the motion. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

**Work** is the product of force and distance. In physics, a force is said to do work if, when acting, there is a movement of the point of application in the direction of the force.

**Orbital mechanics** or **astrodynamics** is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and law of universal gravitation. It is a core discipline within space-mission design and control.

A **sub-orbital spaceflight** is a spaceflight in which the spacecraft reaches outer space, but its trajectory intersects the atmosphere or surface of the gravitating body from which it was launched, so that it will not complete one orbital revolution.

In analytical mechanics, specifically the study of the rigid body dynamics of multibody systems, the term **generalized coordinates** refers to the parameters that describe the configuration of the system relative to some reference configuration. These parameters must uniquely define the configuration of the system relative to the reference configuration. This is done assuming that this can be done with a single chart. The **generalized velocities** are the time derivatives of the generalized coordinates of the system.

In classical mechanics, the **gravitational potential** at a location is equal to the work per unit mass that would be needed to move the object from a fixed reference location to the location of the object. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.

In astrodynamics or celestial mechanics, a **hyperbolic trajectory** is the trajectory of any object around a central body with more than enough speed to escape the central object's gravitational pull. The name derives from the fact that according to Newtonian theory such an orbit has the shape of a hyperbola. In more technical terms this can be expressed by the condition that the orbital eccentricity is greater than one.

In astrodynamics or celestial mechanics, an **elliptic orbit** or **elliptical orbit** is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1. In a wider sense, it is a Kepler orbit with negative energy. This includes the radial elliptic orbit, with eccentricity equal to 1.

In celestial mechanics the **specific relative angular momentum** plays a pivotal role in the analysis of the two-body problem. One can show that it is a constant vector for a given orbit under ideal conditions. This essentially proves Kepler's second law.

In astrodynamics an **orbit equation** defines the path of orbiting body around central body relative to , without specifying position as a function of time. Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance, has an orbit that is a conic section with the central body located at one of the two foci, or *the* focus.

A **rotating frame of reference** is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth.

**Spacecraft flight dynamics** is the science of space vehicle performance, stability, and control. It requires analysis of the six degrees of freedom of the vehicle's flight, which are similar to those of aircraft: translation in three dimensional axes; and its orientation about the vehicle's center of mass in these axes, known as *pitch*, *roll* and *yaw*, with respect to a defined frame of reference.

In classical mechanics, the **Kepler problem** is a special case of the two-body problem, in which the two bodies interact by a central force *F* that varies in strength as the inverse square of the distance *r* between them. The force may be either attractive or repulsive. The "problem" to be solved is to find the position or speed of the two bodies over time given their masses and initial positions and velocities. Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements.

In physics, **Hamilton's principle** is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system is determined by a variational problem for a functional based on a single function, the Lagrangian, which contains all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the *differential* equations of motion of the physical system. Although formulated originally for classical mechanics, Hamilton's principle also applies to classical fields such as the electromagnetic and gravitational fields, and plays an important role in quantum mechanics, quantum field theory and criticality theories.

In celestial mechanics, a **Kepler orbit** is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.

**Orbital perturbation analysis** is the activity of determining why a satellite's orbit differs from the mathematical ideal orbit. A satellite's orbit in an ideal two-body system describes a conic section, usually an ellipse. In reality, there are several factors that cause the conic section to continually change. These deviations from the ideal Kepler's orbit are called perturbations.

**Orbit modeling** is the process of creating mathematical models to simulate motion of a massive body as it moves in orbit around another massive body due to gravity. Other forces such as gravitational attraction from tertiary bodies, air resistance, solar pressure, or thrust from a propulsion system are typically modeled as secondary effects. Directly modeling an orbit can push the limits of machine precision due to the need to model small perturbations to very large orbits. Because of this, perturbation methods are often used to model the orbit in order to achieve better accuracy.

- ↑ orbit (astronomy) – Britannica Online Encyclopedia
- ↑ The Space Place :: What's a Barycenter
- ↑ Kuhn,
*The Copernican Revolution*, pp. 238, 246–252 - ↑
*Encyclopædia Britannica*, 1968, vol. 2, p. 645 - ↑ M Caspar,
*Kepler*(1959, Abelard-Schuman), at pp.131–140; A Koyré,*The Astronomical Revolution: Copernicus, Kepler, Borelli*(1973, Methuen), pp. 277–279 - ↑ Jones, Andrew. "Kepler's Laws of Planetary Motion". about.com . Retrieved 1 June 2008.
- ↑ See pages 6 to 8 in Newton's "Treatise of the System of the World" (written 1685, translated into English 1728, see Newton's 'Principia' – A preliminary version), for the original version of this 'cannonball' thought-experiment.
- ↑ Fitzpatrick, Richard (2 February 2006). "Planetary orbits".
*Classical Mechanics – an introductory course*. The University of Texas at Austin. Archived from the original on 3 March 2001. Retrieved 14 January 2009. - ↑ Pogge, Richard W.; "Real-World Relativity: The GPS Navigation System". Retrieved 25 January 2008.
- ↑ Iorio, L. (2011). "Perturbed stellar motions around the rotating black hole in Sgr A* for a generic orientation of its spin axis".
*Physical Review D*.**84**(12): 124001. arXiv: 1107.2916 . Bibcode:2011PhRvD..84l4001I. doi:10.1103/PhysRevD.84.124001. - ↑ Renzetti, G. (2013). "Satellite Orbital Precessions Caused by the Octupolar Mass Moment of a Non-Spherical Body Arbitrarily Oriented in Space".
*Journal of Astrophysics and Astronomy*.**34**(4): 341–348. Bibcode:2013JApA...34..341R. doi:10.1007/s12036-013-9186-4. - ↑ Renzetti, G. (2014). "Satellite orbital precessions caused by the first odd zonal J3 multipole of a non-spherical body arbitrarily oriented in space".
*Astrophysics and Space Science*.**352**(2): 493–496. Bibcode:2014Ap&SS.352..493R. doi:10.1007/s10509-014-1915-x. - 1 2 Peterson, Ivars (23 September 2013). "Strange Orbits".
*Science News*. Retrieved 21 July 2017. - ↑ "NASA Safety Standard 1740.14, Guidelines and Assessment Procedures for Limiting Orbital Debris" (PDF). Office of Safety and Mission Assurance. 1 August 1995. Archived from the original (PDF) on 15 February 2013., pages 37-38 (6-1,6-2); figure 6-1.
- 1 2 "Orbit: Definition".
*Ancillary Description Writer's Guide, 2013*. National Aeronautics and Space Administration (NASA) Global Change Master Directory. Archived from the original on 11 May 2013. Retrieved 29 April 2013. - ↑ Vallado, David A. (2007).
*Fundamentals of Astrodynamics and Applications*. Hawthorne, CA: Microcosm Press. p. 31. - ↑ Ferreira, Becky (19 February 2015). "How Satellite Companies Patent Their Orbits".
*Motherboard*. Vice News. Retrieved 20 September 2018.

- Abell; Morrison & Wolff (1987).
*Exploration of the Universe*(fifth ed.). Saunders College Publishing. - Linton, Christopher (2004).
*From Eudoxus to Einstein: A History of Mathematical Astronomy*. Cambridge University Press. ISBN 978-1-139-45379-0. - Frank Swetz; John Fauvel; Bengt Johansson; Victor Katz; Otto Bekken (1995).
*Learn from the Masters*. MAA. ISBN 978-0-88385-703-8. - Andrea Milani and Giovanni F. Gronchi.
*Theory of Orbit Determination*(Cambridge University Press; 378 pages; 2010). Discusses new algorithms for determining the orbits of both natural and artificial celestial bodies.

Look up in Wiktionary, the free dictionary. orbit |

Wikimedia Commons has media related to . Orbits |

- CalcTool: Orbital period of a planet calculator. Has wide choice of units. Requires JavaScript.
- Java simulation on orbital motion. Requires Java.
- NOAA page on Climate Forcing Data includes (calculated) data on Earth orbit variations over the last 50 million years and for the coming 20 million years
- On-line orbit plotter. Requires JavaScript.
- Orbital Mechanics (Rocket and Space Technology)
- Orbital simulations by Varadi, Ghil and Runnegar (2003) provide another, slightly different series for Earth orbit eccentricity, and also a series for orbital inclination. Orbits for the other planets were also calculated, by F. Varadi; B. Runnegar; M. Ghil (2003). "Successive Refinements in Long-Term Integrations of Planetary Orbits".
*The Astrophysical Journal*.**592**: 620–630. Bibcode:2003ApJ...592..620V. doi:10.1086/375560., but only the eccentricity data for Earth and Mercury are available online. - Understand orbits using direct manipulation. Requires JavaScript and Macromedia
- Merrifield, Michael. "Orbits (including the first manned orbit)".
*Sixty Symbols*. Brady Haran for the University of Nottingham. - Planetary orbit Simulator Astronoo

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.