List of orbits

Last updated

Comparison of geostationary Earth orbit with GPS, GLONASS, Galileo and Compass (medium Earth orbit) satellite navigation system orbits with the International Space Station, Hubble Space Telescope and Iridium constellation orbits, and the nominal size of the Earth. The Moon's orbit is around 9 times larger (in radius and length) than geostationary orbit. Comparison satellite navigation orbits.svg
Comparison of geostationary Earth orbit with GPS, GLONASS, Galileo and Compass (medium Earth orbit) satellite navigation system orbits with the International Space Station, Hubble Space Telescope and Iridium constellation orbits, and the nominal size of the Earth. The Moon's orbit is around 9 times larger (in radius and length) than geostationary orbit.
The three most important Earth Orbits and the inner and outer Van Allen radiation belt Earth Orbits.svg
The three most important Earth Orbits and the inner and outer Van Allen radiation belt
Various Earth orbits to scale:
the innermost, the red dotted line represents the orbit of the International Space Station (ISS);
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
cyan represents low Earth orbit,
yellow represents medium Earth orbit,
The green dashed line represents the orbit of Global Positioning System (GPS) satellites, and
the outermost, the black dashed line represents geosynchronous orbit. Orbits around earth scale diagram.svg
Various Earth orbits to scale:
  •   the innermost, the red dotted line represents the orbit of the International Space Station (ISS);
  •   cyan represents low Earth orbit,
  •   yellow represents medium Earth orbit,
  •   The green dashed line represents the orbit of Global Positioning System (GPS) satellites, and
  •   the outermost, the black dashed line represents geosynchronous orbit.

The following is a list of types of orbits:

Centric classifications

For orbits centered about planets other than Earth and Mars, the orbit names incorporating Greek terminology is less commonly used

Contents

Altitude classifications for geocentric orbits

For Earth orbiting satellites below the height of about 800 km, the atmospheric drag is the major orbit perturbing force out of all non-gravitational forces. [6] Above 800 km, solar radiation pressure causes the largest orbital perturbations. [7] However, the atmospheric drag strongly depends on the density of the upper atmosphere, which is related to the solar activity, therefore the height at which the impact of the atmospheric drag is similar to solar radiation pressure varies depending on the phase of the solar cycle.

Inclination classifications

Directional classifications

Eccentricity classifications

There are two types of orbits: closed (periodic) orbits, and open (escape) orbits. Circular and elliptical orbits are closed. Parabolic and hyperbolic orbits are open. Radial orbits can be either open or closed.

Synchronicity classifications

Geostationary orbit as seen from the north celestial pole. To an observer on the rotating Earth, the red and yellow satellites appear stationary in the sky above Singapore and Africa respectively. Geostationaryjava3D.gif
Geostationary orbit as seen from the north celestial pole. To an observer on the rotating Earth, the red and yellow satellites appear stationary in the sky above Singapore and Africa respectively.

Orbits in galaxies or galaxy models

Pyramid orbit PyramidOrbit.jpg
Pyramid orbit

Special classifications

Pseudo-orbit classifications

A diagram showing the five Lagrangian points in a two-body system with one body far more massive than the other (e.g. the Sun and the Earth). In such a system, L3-L5 are situated slightly outside of the secondary's orbit despite their appearance in this small scale diagram. Lagrange very massive.svg
A diagram showing the five Lagrangian points in a two-body system with one body far more massive than the other (e.g. the Sun and the Earth). In such a system, L3L5 are situated slightly outside of the secondary's orbit despite their appearance in this small scale diagram.

See also

Notes

  1. Orbital periods and speeds are calculated using the relations 4π2R3 = T2GM and V2R = GM, where R = radius of orbit in metres, T = orbital period in seconds, V = orbital speed in m/s, G = gravitational constant ≈ 6.673×10−11 Nm2/kg2, M = mass of Earth ≈ 5.98×1024 kg.
  2. Approximately 8.6 times when the Moon is nearest (363,104 km ÷ 42,164 km) to 9.6 times when the Moon is farthest (405,696 km ÷ 42,164 km).

Related Research Articles

Orbit Curved path of an object around a point

In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.

Satellite Human-made object put into an orbit

In the context of spaceflight, a satellite is an object that has been intentionally placed into orbit. These objects are called artificial satellites to distinguish them from natural satellites such as Earth's Moon.

Geosynchronous orbit Orbit keeping the satellite at a fixed longitude above the equator

A geosynchronous orbit is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds. The synchronization of rotation and orbital period means that, for an observer on Earth's surface, an object in geosynchronous orbit returns to exactly the same position in the sky after a period of one sidereal day. Over the course of a day, the object's position in the sky may remain still or trace out a path, typically in a figure-8 form, whose precise characteristics depend on the orbit's inclination and eccentricity. A circular geosynchronous orbit has a constant altitude of 35,786 km (22,236 mi).

Geostationary orbit Circular orbit above Earths Equator and following the direction of Earths rotation

A geostationary orbit, also referred to as a geosynchronous equatorial orbit (GEO), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's Equator and following the direction of Earth's rotation.

A synchronous orbit is an orbit in which an orbiting body has a period equal to the average rotational period of the body being orbited, and in the same direction of rotation as that body.

Low Earth orbit Orbit around Earth with an altitude between 160 and 2,000 km

A low Earth orbit (LEO) is an Earth-centered orbit near the planet, often specified as having a period of 128 minutes or less and an eccentricity less than 0.25. Most of the artificial objects in outer space are in LEO, with an altitude never more than about one-third of the radius of Earth.

Trans-lunar injection Propulsive maneuver used to arrive at the Moon

A trans-lunar injection (TLI) is a propulsive maneuver used to set a spacecraft on a trajectory that will cause it to arrive at the Moon.

Hohmann transfer orbit Elliptical orbit used to transfer between two orbits of different altitudes, in the same plane

In orbital mechanics, the Hohmann transfer orbit is an elliptical orbit used to transfer between two circular orbits of different radii around a central body in the same plane that is sometimes tangential to both. The Hohmann transfer often uses the lowest possible amount of propellant in traveling between these orbits, but bi-elliptic transfers can use less in some cases.

Geostationary transfer orbit Hohmann transfer orbit used to reach geosynchronous or geostationary orbit

A geosynchronous transfer orbit or geostationary transfer orbit (GTO) is a type of geocentric orbit. Satellites that are destined for geosynchronous (GSO) or geostationary orbit (GEO) are (almost) always put into a GTO as an intermediate step for reaching their final orbit.

A geocentric orbit or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,216 pieces of space debris as tracked by the Goddard Space Flight Center. More than 16,291 objects previously launched have undergone orbital decay and entered Earth's atmosphere.

Sun-synchronous orbit Type of geocentric orbit

A Sun-synchronous orbit (SSO), also called a heliosynchronous orbit, is a nearly polar orbit around a planet, in which the satellite passes over any given point of the planet's surface at the same local mean solar time. More technically, it is an orbit arranged so that it precesses through one complete revolution each year, so it always maintains the same relationship with the Sun.

Delta-<i>v</i> budget

In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during the mission. As input to the Tsiolkovsky rocket equation, it determines how much propellant is required for a vehicle of given empty mass and propulsion system.

In astrodynamics, orbital station-keeping is keeping a spacecraft at a fixed distance from another spacecraft or celestial body. It requires a series of orbital maneuvers made with thruster burns to keep the active craft in the same orbit as its target. For many low Earth orbit satellites, the effects of non-Keplerian forces, i.e. the deviations of the gravitational force of the Earth from that of a homogeneous sphere, gravitational forces from Sun/Moon, solar radiation pressure and air drag, must be counteracted.

Graveyard orbit Supersynchronous orbit where spacecraft are intentionally placed at the end of their operational life

A graveyard orbit, also called a junk orbit or disposal orbit, is an orbit that lies away from common operational orbits. One significant graveyard orbit is a supersynchronous orbit well beyond geosynchronous orbit. Some satellites are moved into such orbits at the end of their operational life to reduce the probability of colliding with operational spacecraft and generating space debris.

Flight dynamics (spacecraft) Application of mechanical dynamics to model the flight of space vehicles

Spacecraft flight dynamics is the application of mechanical dynamics to model how the external forces acting on a space vehicle or spacecraft determine its flight path. These forces are primarily of three types: propulsive force provided by the vehicle's engines; gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag.

AsiaSat 3, previously known as HGS-1 and then PAS-22, was a geosynchronous communications satellite, which was salvaged from an unusable geosynchronous transfer orbit (GTO) by means of the Moon's gravity.

A supersynchronous orbit is either an orbit with a period greater than that of a synchronous orbit, or just an orbit whose apoapsis is higher than that of a synchronous orbit. A synchronous orbit has a period equal to the rotational period of the body which contains the barycenter of the orbit.

Medium Earth orbit Earth-centered orbit above low Earth orbit and below geostationary orbit

A medium Earth orbit (MEO) is an Earth-centred orbit with an altitude above a low Earth orbit (LEO) and below a high Earth orbit (HEO) – between 2,000 and 35,786 km above sea level.

A near-equatorial orbit is an orbit that lies close to the equatorial plane of the object orbited. Such an orbit has an inclination near 0°. On Earth, such orbits lie on the celestial equator, the great circle of the imaginary celestial sphere on the same plane as the equator of Earth. A geostationary orbit is a particular type of equatorial orbit, one which is geosynchronous. A satellite in a geostationary orbit appears stationary, always at the same point in the sky, to observers on the surface.

In celestial mechanics, the term stationary orbit refers to an orbit around a planet or moon where the orbiting satellite or spacecraft remains orbiting over the same spot on the surface. From the ground, the satellite would appear to be standing still, hovering above the surface in the same spot, day after day.

References

  1. "Definition of GALACTOCENTRIC". www.merriam-webster.com. Retrieved 3 June 2020.
  2. 1 2 Parker, Sybil P. (2002). McGraw-Hill Dictionary of Scientific and Technical Terms Sixth Edition. McGraw-Hill. p. 1772. ISBN   007042313X.
  3. "NASA Safety Standard 1740.14, Guidelines and Assessment Procedures for Limiting Orbital Debris" (PDF). Office of Safety and Mission Assurance. 1 August 1995. p. A-2. Archived from the original (PDF) on 15 February 2013. Low Earth orbit (LEO) – The region of space below the altitude of 2000 km., pages 37–38 (6–1,6–2); figure 6-1.
  4. 1 2 3 4 "Orbit: Definition". Ancillary Description Writer's Guide, 2013. National Aeronautics and Space Administration (NASA) Global Change Master Directory. Archived from the original on 11 May 2013. Retrieved 29 April 2013.
  5. Vallado, David A. (2007). Fundamentals of Astrodynamics and Applications. Hawthorne, CA: Microcosm Press. p. 31.
  6. Krzysztof, Sośnica (1 March 2015). "Impact of the Atmospheric Drag on Starlette, Stella, Ajisai, and Lares Orbits". Artificial Satellites. 50 (1): 1–18. doi: 10.1515/arsa-2015-0001 .
  7. Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław; Strugarek, Dariusz (28 January 2020). "Toward the 1-cm Galileo orbits: challenges in modeling of perturbing forces". Journal of Geodesy. 94 (2): 16. doi: 10.1007/s00190-020-01342-2 .
  8. Hadhazy, Adam (22 December 2014). "A New Way to Reach Mars Safely, Anytime and on the Cheap". Scientific American. Retrieved 25 December 2014.
  9. Whipple, P. H . (17 February 1970). "Some Characteristics of Coelliptic Orbits – Case 610" (PDF). Bellcom Inc. Washington: NASA. Archived from the original (PDF) on 21 May 2010. Retrieved 23 May 2012.
  10. 1 2 This answer explains why such inclination keeps apsidial drift small: https://space.stackexchange.com/a/24256/6834
  11. "Catalog of Earth Satellite Orbits". earthobservatory.nasa.gov. NASA. 4 September 2009. Retrieved 4 May 2022.
  12. Merritt and Vasilev, ORBITS AROUND BLACK HOLES IN TRIAXIAL NUCLEI", The Astrophysical Journal 726(2), 61 (2011).
  13. 1 2 Merritt, David (2013). Dynamics and Evolution of Galactic Nuclei. Princeton: Princeton University Press. ISBN   9780691121017.
  14. NASA Shapes Science Plan for Deep-Space Outpost Near the Moon March 2018
  15. 1 2 How a New Orbital Moon Station Could Take Us to Mars and Beyond Oct 2017 video with refs
  16. Angelic halo orbit chosen for humankind's first lunar outpost. European Space Agency, Published by PhysOrg. 19 July 2019.
  17. Halo orbit selected for Gateway space station. David Szondy, New Atlas. 18 July 2019.
  18. Foust, Jeff (16 September 2019). "NASA cubesat to test lunar Gateway orbit". SpaceNews . Retrieved 15 June 2020.
  19. "Asteroid Redirect Mission Reference Concept" (PDF). www.nasa.gov. NASA. Retrieved 14 June 2015.
  20. "About Spitzer: Fast Facts". Caltech. 2008. Archived from the original on 2 February 2007. Retrieved 22 April 2007.
  21. "U.S. Government Orbital Debris Mitigation Standard Practices" (PDF). United States Federal Government. Retrieved 28 November 2013.
  22. Luu, Kim; Sabol, Chris (October 1998). "Effects of perturbations on space debris in supersynchronous storage orbits" (PDF). Air Force Research Laboratory Technical Reports (AFRL-VS-PS-TR-1998-1093). Retrieved 28 November 2013.
  23. Keesey, Lori (31 July 2013). "New Explorer Mission Chooses the 'Just-Right' Orbit". NASA. Retrieved 5 April 2018.
  24. Overbye, Dennis (26 March 2018). "Meet Tess, Seeker of Alien Worlds". The New York Times . Retrieved 5 April 2018.