Altitude

Last updated


Altitude or height (sometimes known as 'depth') is defined based on the context in which it is used (aviation, geometry, geographical survey, sport, atmospheric pressure, and many more). As a general definition, altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The reference datum also often varies according to the context. Although the term altitude is commonly used to mean the height above sea level of a location, in geography the term elevation is often preferred for this usage.

Height Measure of vertical distance

Height is measure of vertical distance, either vertical extent or vertical position . For example, "The height of that building is 50 m" or "The height of an airplane is about 10,000 m".

Geography The science that studies the terrestrial surface, the societies that inhabit it and the territories, landscapes, places or regions that form it

Geography is a field of science devoted to the study of the lands, features, inhabitants, and phenomena of the Earth and planets. The first person to use the word γεωγραφία was Eratosthenes. Geography is an all-encompassing discipline that seeks an understanding of Earth and its human and natural complexities—not merely where objects are, but also how they have changed and come to be.

Elevation Height of a geographic location above a fixed reference point

The elevation of a geographic location is its height above or below a fixed reference point, most commonly a reference geoid, a mathematical model of the Earth's sea level as an equipotential gravitational surface . The term elevation is mainly used when referring to points on the Earth's surface, while altitude or geopotential height is used for points above the surface, such as an aircraft in flight or a spacecraft in orbit, and depth is used for points below the surface.

Contents

Vertical distance measurements in the "down" direction are commonly referred to as depth.

In aviation

Vertical distance comparison Vertical distances.svg
Vertical distance comparison

In aviation, the term altitude can have several meanings, and is always qualified by explicitly adding a modifier (e.g. "true altitude"), or implicitly through the context of the communication. Parties exchanging altitude information must be clear which definition is being used. [1]

Aviation altitude is measured using either mean sea level (MSL) or local ground level (above ground level, or AGL) as the reference datum.

Pressure altitude divided by 100 feet (30 m) is the flight level, and is used above the transition altitude (18,000 feet (5,500 m) in the US, but may be as low as 3,000 feet (910 m) in other jurisdictions); so when the altimeter reads 18,000 ft on the standard pressure setting the aircraft is said to be at "Flight level 180". When flying at a flight level, the altimeter is always set to standard pressure (29.92  inHg or 1013.25  hPa).

Pressure altitude is the altitude in the International Standard Atmosphere (ISA) with the same atmospheric pressure as that of the part of the atmosphere in question.

In aviation and aviation meteorology, flight level (FL) is an aircraft's altitude at standard air pressure, expressed in hundreds of feet. The air pressure is computed assuming an International Standard Atmosphere pressure of 1013.25 hPa (29.92 inHg) at sea level, and therefore is not necessarily the same as the aircraft's actual altitude, either above sea level or above ground level.

Pascal (unit) SI unit of pressure

The pascal is the SI derived unit of pressure used to quantify internal pressure, stress, Young's modulus and ultimate tensile strength. The unit, named after Blaise Pascal, is defined as one newton per square metre.

On the flight deck, the definitive instrument for measuring altitude is the pressure altimeter, which is an aneroid barometer with a front face indicating distance (feet or metres) instead of atmospheric pressure.

Altimeter instrument used to measure the altitude of an object above a fixed level

An altimeter or an altitude meter is an instrument used to measure the altitude of an object above a fixed level. The measurement of altitude is called altimetry, which is related to the term bathymetry, the measurement of depth under water.

Atmospheric pressure, sometimes also called barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 1,013.25 mbar, equivalent to 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth, that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.

There are several types of altitude in aviation:

These types of altitude can be explained more simply as various ways of measuring the altitude:

In atmospheric studies

Atmospheric layers

The Earth's atmosphere is divided into several altitude regions. These regions start and finish at varying heights depending on season and distance from the poles. The altitudes stated below are averages: [3]

The Kármán line, at an altitude of 100 kilometres (62 mi) above sea level, by convention defines represents the demarcation between the atmosphere and space. [4] The thermosphere and exosphere (along with the higher parts of the mesosphere) are regions of the atmosphere that are conventionally defined as space.

High altitude and low pressure

Regions on the Earth's surface (or in its atmosphere) that are high above mean sea level are referred to as high altitude. High altitude is sometimes defined to begin at 2,400 meters (8,000 ft) above sea level. [5] [6] [7]

At high altitude, atmospheric pressure is lower than that at sea level. This is due to two competing physical effects: gravity, which causes the air to be as close as possible to the ground; and the heat content of the air, which causes the molecules to bounce off each other and expand. [8]

Temperature profile

The temperature profile of the atmosphere is a result of an interaction between radiation and convection. Sunlight in the visible spectrum hits the ground and heats it. The ground then heats the air at the surface. If radiation were the only way to transfer heat from the ground to space, the greenhouse effect of gases in the atmosphere would keep the ground at roughly 333 K (60 °C; 140 °F), and the temperature would decay exponentially with height. [9]

However, when air is hot, it tends to expand, which lowers its density. Thus, hot air tends to rise and transfer heat upward. This is the process of convection. Convection comes to equilibrium when a parcel of air at a given altitude has the same density as its surroundings. Air is a poor conductor of heat, so a parcel of air will rise and fall without exchanging heat. This is known as an adiabatic process, which has a characteristic pressure-temperature curve. As the pressure gets lower, the temperature decreases. The rate of decrease of temperature with elevation is known as the adiabatic lapse rate, which is approximately 9.8 °C per kilometer (or 5.4 °F (−14.8 °C) per 1000 feet) of altitude. [9]

Note that the presence of water in the atmosphere complicates the process of convection. Water vapor contains latent heat of vaporization. As air rises and cools, it eventually becomes saturated and cannot hold its quantity of water vapor. The water vapor condenses (forming clouds), and releases heat, which changes the lapse rate from the dry adiabatic lapse rate to the moist adiabatic lapse rate (5.5 °C per kilometer or 3 °F (−16 °C) per 1000 feet. [10] As an average, the International Civil Aviation Organization (ICAO) defines an international standard atmosphere (ISA) with a temperature lapse rate of 6.49 °C per kilometer (3.56 °F per 1,000 feet). [11] The actual lapse rate can vary by altitude and by location.

Finally, note that only the troposphere (up to approximately 11 kilometres (36,000 ft) of altitude) in the Earth's atmosphere undergoes notable convection; in the stratosphere, there is little vertical convection. [12]

Effects on organisms

Humans

Medicine recognizes that altitudes above 1,500 metres (4,900 ft) start to affect humans, [13] and there is no record of humans living at extreme altitudes above 5,500–6,000 metres (18,000–19,700 ft) for more than two years. [14] As the altitude increases, atmospheric pressure decreases, which affects humans by reducing the partial pressure of oxygen. [15] The lack of oxygen above 2,400 metres (8,000 ft) can cause serious illnesses such as altitude sickness, high altitude pulmonary edema, and high altitude cerebral edema. [7] The higher the altitude, the more likely are serious effects. [7] The human body can adapt to high altitude by breathing faster, having a higher heart rate, and adjusting its blood chemistry. [16] [17] It can take days or weeks to adapt to high altitude. However, above 8,000 metres (26,000 ft), (in the "death zone"), altitude acclimatization becomes impossible. [18]

There is a significantly lower overall mortality rate for permanent residents at higher altitudes. [19] Additionally, there is a dose response relationship between increasing elevation and decreasing obesity prevalence in the United States. [20] In addition, the recent hypothesis suggests that high altitude could be protective against Alzheimer's disease via action of erythropoietin, a hormone released by kidney in response to hypoxia. [21] However, people living at higher elevations have a statistically significant higher rate of suicide. [22] The cause for the increased suicide risk is unknown so far. [22]

Athletes

For athletes, high altitude produces two contradictory effects on performance. For explosive events (sprints up to 400 metres, long jump, triple jump) the reduction in atmospheric pressure signifies less atmospheric resistance, which generally results in improved athletic performance. [23] For endurance events (races of 5,000 metres or more) the predominant effect is the reduction in oxygen which generally reduces the athlete's performance at high altitude. Sports organizations acknowledge the effects of altitude on performance: the International Association of Athletic Federations (IAAF), for example, marks record performances achieved at an altitude greater than 1,000 metres (3,300 ft) with the letter "A". [24]

Athletes also can take advantage of altitude acclimatization to increase their performance. The same changes that help the body cope with high altitude increase performance back at sea level. [25] [26] These changes are the basis of altitude training which forms an integral part of the training of athletes in a number of endurance sports including track and field, distance running, triathlon, cycling and swimming.

Other organisms

Decreased oxygen availability and decreased temperature make life at high altitude challenging. Despite these environmental conditions, many species have been successfully adapted at high altitudes. Animals have developed physiological adaptations to enhance oxygen uptake and delivery to tissues which can be used to sustain metabolism. The strategies used by animals to adapt to high altitude depend on their morphology and phylogeny. For example, small mammals face the challenge of maintaining body heat in cold temperatures, due to their small volume to surface area ratio. As oxygen is used as a source of metabolic heat production, the hypobaric hypoxia at high altitudes is problematic.

There is also a general trend of smaller body sizes and lower species richness at high altitudes, likely due to lower oxygen partial pressures. [27] These factors may decrease productivity in high altitude habitats, meaning there will be less energy available for consumption, growth, and activity. [28]

However, some species, such as birds,thrive at high altitude. [29] Birds thrive because of physiological features that are advantageous for high-altitude flight.

See also

Related Research Articles

Troposphere The lowest layer of the atmosphere

The troposphere is the lowest layer of Earth's atmosphere, and is also where nearly all weather conditions take place. It contains 75% of the atmosphere's mass and 99% of the total mass of water vapour and aerosols. The average height of the troposphere is 18 km in the tropics, 17 km in the middle latitudes, and 6 km in the polar regions in winter. The total average height of the troposphere is 13 km.

Inversion (meteorology) deviation from the normal change of an atmospheric property with altitude

In meteorology, an inversion, also known as a temperature inversion, is a deviation from the normal change of an atmospheric property with altitude. It almost always refers to an inversion of the thermal lapse rate. Normally, air temperature decreases with an increase in altitude. During an inversion, warmer air is held above cooler air; the normal temperature profile with altitude is inverted.

Sea level Average level for the surface of the ocean at any given geographical position on the planetary surface

Mean sea level (MSL) is an average level of the surface of one or more of Earth's bodies of water from which heights such as elevation may be measured. The global MSL is a type of vertical datum – a standardised geodetic datum – that is used, for example, as a chart datum in cartography and marine navigation, or, in aviation, as the standard sea level at which atmospheric pressure is measured to calibrate altitude and, consequently, aircraft flight levels. A common and relatively straightforward mean sea-level standard is instead the midpoint between a mean low and mean high tide at a particular location.

The lapse rate is the rate at which an atmospheric variable, normally temperature in Earth's atmosphere, changes with altitude. Lapse rate arises from the word lapse, in the sense of a gradual change. It corresponds to the vertical component of the spatial gradient of temperature. Although this concept is most often applied to the Earth's troposphere, it can be extended to any gravitationally supported parcel of gas.

Equivalent potential temperature, commonly referred to as theta-e , is a quantity that is conserved during changes to an air parcel's pressure, even if water vapor condenses during that pressure change. It is therefore more conserved than the ordinary potential temperature, which remains constant only for unsaturated vertical motions.

Alpine climate average weather (climate) for the regions above the tree line

Alpine climate is the typical weather (climate) for the regions above the tree line. This climate is also referred to as a mountain climate or highland climate.

International Standard Atmosphere Atmospheric model

The International Standard Atmosphere (ISA) is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. It has been established to provide a common reference for temperature and pressure and consists of tables of values at various altitudes, plus some formulas by which those values were derived. The International Organization for Standardization (ISO) publishes the ISA as an international standard, ISO 2533:1975. Other standards organizations, such as the International Civil Aviation Organization (ICAO) and the United States Government, publish extensions or subsets of the same atmospheric model under their own standards-making authority.

Cumulus humilis cloud Cloud species

Cumulus humilis are cumuliform clouds with little vertical extent, common in the summer, that are often referred to as "fair weather cumulus". If they develop into cumulus mediocris or cumulus congestus, thunderstorms could form later in the day.

Convective instability

In meteorology, convective instability or stability of an air mass refers to its ability to resist vertical motion. A stable atmosphere makes vertical movement difficult, and small vertical disturbances dampen out and disappear. In an unstable atmosphere, vertical air movements tend to become larger, resulting in turbulent airflow and convective activity. Instability can lead to significant turbulence, extensive vertical clouds, and severe weather such as thunderstorms.

Level of free convection

The level of free convection (LFC) is the altitude in the atmosphere where the temperature of the environment decreases faster than the moist adiabatic lapse rate of a saturated air parcel at the same level.

Atmospheric thermodynamics is the study of heat-to-work transformations that take place in the earth's atmosphere and manifest as weather or climate. Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and vertical instabilities in the atmosphere. Atmospheric thermodynamic diagrams are used as tools in the forecasting of storm development. Atmospheric thermodynamics forms a basis for cloud microphysics and convection parameterizations used in numerical weather models and is used in many climate considerations, including convective-equilibrium climate models.

Metres above mean sea level (MAMSL) or simply metres above sea level is a standard metric measurement in metres of vertical distance of a location in reference to a historic mean sea level taken as a vertical datum. Mean sea levels are affected by climate change and other factors and change over time. For this and other reasons, recorded measurements of elevation above sea level might differ from the actual elevation of a given location over sea level at a given moment.

The convective condensation level (CCL) represents the height where an air parcel becomes saturated when heated from below and lifted adiabatically due to buoyancy.

Atmospheric convection

Atmospheric convection is the result of a parcel-environment instability, or temperature difference layer in the atmosphere. Different lapse rates within dry and moist air masses lead to instability. Mixing of air during the day which expands the height of the planetary boundary layer leads to increased winds, cumulus cloud development, and decreased surface dew points. Moist convection leads to thunderstorm development, which is often responsible for severe weather throughout the world. Special threats from thunderstorms include hail, downbursts, and tornadoes.

QFF is an aeronautical code Q code. It is the MSL pressure derived from local meteorological station conditions in accordance with meteorological practice. This is the altimeter setting that is intended to produce correct altitude indication on an altimeter at the actual sea level elevation, while QNH is intended to have no error at the station elevation.

Atmospheric instability

Atmospheric instability is a condition where the Earth's atmosphere is generally considered to be unstable and as a result the weather is subjected to a high degree of variability through distance and time. Atmospheric stability is a measure of the atmosphere's tendency to discourage or deter vertical motion, and vertical motion is directly correlated to different types of weather systems and their severity. In unstable conditions, a lifted thing, such as a parcel of air will be warmer than the surrounding air at altitude. Because it is warmer, it is less dense and is prone to further ascent.

Vertical position or vertical location is a position along a vertical direction above or below a given vertical datum. Vertical distance or vertical separation is the distance between two vertical positions. Many vertical coordinates exist for expressing vertical position: depth, height, altitude, elevation, etc. Each quantity may be expressed in various units: metres, feet, etc.

References

  1. 1 2 Air Navigation. Department of the Air Force. 1 December 1989. AFM 51-40.
  2. 1 2 Radiotelephony Manual. UK Civil Aviation Authority. 1 January 1995. ISBN   978-0-86039-601-7. CAP413.
  3. "Layers of the Atmosphere". JetStream, the National Weather Service Online Weather School. National Weather Service. Archived from the original on 19 December 2005. Retrieved 22 December 2005.
  4. Dr. S. Sanz Fernández de Córdoba (24 June 2004). "The 100 km Boundary for Astronautics". Fédération Aéronautique Internationale. Archived from the original on 9 August 2011.
  5. Webster's New World Medical Dictionary. Wiley. 2008. ISBN   978-0-470-18928-3.
  6. "An Altitude Tutorial". International Society for Mountain Medicine. Archived from the original on 19 July 2011. Retrieved 22 June 2011.
  7. 1 2 3 Cymerman, A; Rock, PB (1994). "Medical Problems in High Mountain Environments. A Handbook for Medical Officers". USARIEM-TN94-2. U.S. Army Research Inst. of Environmental Medicine Thermal and Mountain Medicine Division Technical Report.Cite journal requires |journal= (help)
  8. "Atmospheric pressure". NOVA Online Everest. Public Broadcasting Service. Archived from the original on 25 January 2009. Retrieved 23 January 2009.
  9. 1 2 Goody, Richard M.; Walker, James C.G. (1972). "Atmospheric Temperatures" (PDF). Atmospheres. Prentice-Hall.
  10. "Dry Adiabatic Lapse Rate". tpub.com. Archived from the original on 3 June 2016. Retrieved 2 May 2016.
  11. Manual of the ICAO Standard Atmosphere (extended to 80 kilometres (262 500 feet)) (Third ed.). International Civil Aviation Organization. 1993. ISBN   978-92-9194-004-2. Doc 7488-CD.
  12. "The stratosphere: overview". UCAR. Retrieved 2 May 2016.
  13. "Non-Physician Altitude Tutorial". International Society for Mountain Medicine. Archived from the original on 23 December 2005. Retrieved 22 December 2005.
  14. West, JB (2002). "Highest permanent human habitation". High Altitude Medical Biology. 3 (4): 401–407. doi:10.1089/15270290260512882. PMID   12631426.
  15. Peacock, Andrew J (17 October 1998). "Oxygen at high altitude". British Medical Journal. 317 (7165): 1063–1066. doi:10.1136/bmj.317.7165.1063. PMC   1114067 . PMID   9774298.
  16. Young, Andrew J.; Reeves, John T. (2002). "21". Human Adaptation to High Terrestrial Altitude. In: Medical Aspects of Harsh Environments. 2. Borden Institute, Washington, DC. Archived from the original on 11 January 2009.
  17. Muza, SR; Fulco, CS; Cymerman, A (2004). "Altitude Acclimatization Guide". U.S. Army Research Inst. Of Environmental Medicine Thermal and Mountain Medicine Division Technical Report (USARIEM–TN–04–05). Retrieved 5 March 2009.
  18. "Everest:The Death Zone". Nova. PBS. 24 February 1998.
  19. West, John B. (January 2011). "Exciting Times in the Study of Permanent Residents of High Altitude". High Altitude Medicine & Biology. 12 (1): 1. doi:10.1089/ham.2011.12101.
  20. Voss, JD; Masuoka, P; Webber, BJ; Scher, AI; Atkinson, RL (2013). "Association of Elevation, Urbanization and Ambient Temperature with Obesity Prevalence in the United States". International Journal of Obesity. 37 (10): 1407–1412. doi:10.1038/ijo.2013.5. PMID   23357956.
  21. Ismailov, RM (July–September 2013). "Erythropoietin and epidemiology of Alzheimer disease". Alzheimer Dis. Assoc. Disord. 27 (3): 204–6. doi:10.1097/WAD.0b013e31827b61b8. PMID   23314061.
  22. 1 2 Brenner, Barry; Cheng, David; Clark, Sunday; Camargo, Carlos A., Jr (Spring 2011). "Positive Association between Altitude and Suicide in 2584 U.S. Counties". High Altitude Medicine & Biology. 12 (1): 31–5. doi:10.1089/ham.2010.1058. PMC   3114154 . PMID   21214344.
  23. Ward-Smith, AJ (1983). "The influence of aerodynamic and biomechanical factors on long jump performance". Journal of Biomechanics. 16 (8): 655–658. doi:10.1016/0021-9290(83)90116-1. PMID   6643537.
  24. "IAAF World Indoor Lists 2012" (PDF). IAAF Statistics Office. 9 March 2012. Archived from the original (PDF) on 22 October 2013.
  25. Wehrlin, JP; Zuest, P; Hallén, J; Marti, B (June 2006). "Live high—train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes". J. Appl. Physiol. 100 (6): 1938–45. doi:10.1152/japplphysiol.01284.2005. PMID   16497842 . Retrieved 5 March 2009.
  26. Gore, CJ; Clark, SA; Saunders, PU (September 2007). "Nonhematological mechanisms of improved sea-level performance after hypoxic exposure". Med Sci Sports Exerc. 39 (9): 1600–9. doi:10.1249/mss.0b013e3180de49d3. PMID   17805094 . Retrieved 5 March 2009.
  27. Jacobsen, Dean (24 September 2007). "Low oxygen pressure as a driving factor for the altitudinal decline in taxon richness of stream macroinvertebrates". Oecologia. 154 (4): 795–807. Bibcode:2008Oecol.154..795J. doi:10.1007/s00442-007-0877-x. PMID   17960424.
  28. Rasmussen, Joseph B.; Robinson, Michael D.; Hontela, Alice; Heath, Daniel D. (8 July 2011). "Metabolic traits of westslope cutthroat trout, introduced rainbow trout and their hybrids in an ecotonal hybrid zone along an elevation gradient". Biological Journal of the Linnean Society. 105: 56–72. doi:10.1111/j.1095-8312.2011.01768.x.
  29. McCracken, K. G.; Barger, CP; Bulgarella, M; Johnson, KP; et al. (October 2009). "Parallel evolution in the major haemoglobin genes of eight species of Andean waterfowl". Molecular Evolution. 18 (19): 3992–4005. doi:10.1111/j.1365-294X.2009.04352.x. PMID   19754505.